Amyloid-β is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas

Tzvete Denchev,¹ Ann H. Milam,¹ Virginia M.-Y. Lee,² John Q. Trojanowski,² Joshua L. Dunaiief⁶

¹F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute and the ²Department of Pathology and Laboratory Medicine, Institute on Aging, Alzheimer’s Disease Center, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA

Purpose: Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly. Increased understanding of the pathogenesis is necessary. Amyloid-beta (Aβ), a major extracellular deposit in Alzheimer’s disease plaques, has recently been found in drusen, the hallmark extracellular deposit in AMD. The goal of this study was to characterize the distribution and frequency of Aβ deposits in drusen from AMD and normal post mortem human retinas to gain additional insight about the potential role of Aβ in AMD pathogenesis.

Methods: Immunocytochemistry was performed with three Aβ antibodies on sections from 9 normal and 9 AMD (3 early, 3 geographic atrophy, 3 exudative AMD) retinas. Five sections from each eye were evaluated. Aβ positive deposits in drusen were identified using epifluorescence and confocal microscopy. Antibodies were pre-adsorbed with Aβ peptide to verify specificity. Some sections were stained with PAS-hematoxylin to aid in evaluation of morphology.

Results: To test and optimize immunocytochemistry, Aβ was detected in amyloid plaques from Alzheimer’s brains. Aβ label was blocked by pre-adsorption of antibody with Aβ peptide, verifying specificity. Four of the 9 AMD retinas and none of the 9 normal retinas had Aβ positive drusen. Two of the early AMD eyes had a few Aβ positive drusen, each with a few Aβ-containing vesicles, and 2 of the geographic atrophy (GA) eyes had many Aβ positive drusen with many Aβ containing vesicles.

Conclusions: Aβ was present in 4 of 9 AMD eyes. Within these eyes, Aβ localized to a subset of drusen. None of the 9 normal eyes surveyed, some of which had small drusen, were A beta positive. Aβ positive vesicles were most numerous in GA eyes at the edges of atrophy, the region at risk for further degeneration. These results suggest that Aβ in drusen correlates with the location of degenerating photoreceptors and retinal pigment epithelium (RPE) cells. Further work will be necessary to determine whether Aβ deposition in drusen may contribute to or result from retinal degeneration.

Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly [1], yet its pathogenesis remains poorly understood. Current treatments are inadequate and would be improved by a better understanding of the molecular events causing the degeneration. It may be possible to gain insight into AMD pathogenesis by exploring similarities to another age-related disease of the central nervous system: Alzheimer’s disease (AD). Extracellular amyloid beta (Aβ) deposition, oxidative stress, and inflammation are important molecular mediators of Alzheimer’s disease [2]. Similarly, recent evidence implicates Aβ, oxidative stress, and inflammatory processes in the pathogenesis of AMD. A role for Aβ in AMD has been suggested by the recent finding of Aβ in drusen, the extracellular deposits that are the earliest sign of AMD [3]. This Aβ in drusen might increase oxidative stress and inflammation in AMD, as it does in AD plaques [2,3].

Cell loss in AMD can occur by apoptosis of retinal pigment epithelial cells followed by apoptosis of photoreceptors [4]. The apoptotic stimulus for retinal pigment epithelium (RPE) death may involve drusen, located just beneath the RPE.

It is possible that Aβ deposition in drusen is a cause or a consequence of RPE and photoreceptor degeneration. While solid evidence has been presented that vesicular Aβ deposits are present in drusen [3], we sought to learn more about the prevalence of Aβ deposits in drusen and the association of these deposits with AMD pathology. We report immunocytochemical analysis of Aβ in 9 normal and 9 AMD post mortem retinas.

METHODS

Source of tissue and population profile: Most post mortem eyes were obtained through the Foundation Fighting Blindness (FFB) eye donor program. The eye pathology reports provided the patient age, gender, brief ocular and medical history, cause of death, and post mortem interval. A few eyes were obtained directly from eye banks. One donor had a potentially relevant co-morbid condition; patient 99-35 had insulin-dependent diabetes mellitus (but no Aβ-positive vesicles). The histopathologic studies followed the tenets of the Declaration of Helsinki, and informed consent was obtained from all eye donors ante mortem. Approval for research on human post mortem donor eyes was obtained from the University of Pennsylvania.

Brain samples from AD patients followed clinically by the National Institute on Aging-funded Penn Alzheimer’s Dis-
ease Center Core (ADCC) were obtained following similar consent procedures and AD was confirmed by ADCC investigators according to established consensus criteria (National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease).

Tissue processing and histology: Upon enucleation, a small incision was made in the pars plana and the eyes were fixed in 4% paraformaldehyde, 0.5% glutaraldehyde in 0.1 M phosphate buffer for several days. The fixed eyes were transferred to 2% paraformaldehyde for storage. A block of tissue containing the optic disc and macula approximately 1 cm in length and 0.5 cm in width was processed as serial 10 mm thick cryosections as previously described [5].

Immunocytochemistry and pre-adsorption: Immunocytochemistry (ICC) was performed using secondary antibody conjugated to Cy3 (red fluorescence emission) as described previously [4]. Five sections from each retina spaced at approximately 400 µm intervals were labeled with monoclonal anti-Aβ antibodies 4G8 and 6E10 (Chemicon, Temecula, CA; 1:1000) and polyclonal antibody pAb 2332 that recognizes Aβ peptide, verifying specificity (Figure 1B). The pink color remaining in Figure 1B is from tissue autofluorescence. Plaques were detected with our polyclonal antibody pAb 2332 as well as commercially available antibodies mAb 6E10 and 4G8 (not shown).

Sections from each of 18 retinas were then immunostained with Aβ antibodies. Nine of the retinas were from donors with normal eyes and 9 with AMD as defined by histologic detection of drusen and at least some RPE and/or photoreceptor loss. Three retinas had drusen and minimal RPE and photoreceptor loss (early AMD), 3 had geographic atrophy (GA), and 3 had exudative AMD (Table 1). Four of the 9 AMD retinas and none of the normal retinas had Aβ positive drusen. Two early AMD retinas had a few Aβ positive vesicles in a few

Table 1. Number of Aβ positive vesicles in AMD and control retinas

<table>
<thead>
<tr>
<th>Case</th>
<th>Age/Sex</th>
<th>COD</th>
<th>PMI</th>
<th>Drusen</th>
<th>Aβ vesicles</th>
<th>Other pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>99-10</td>
<td>74</td>
<td>CA</td>
<td>8.25 h</td>
<td>few</td>
<td>none</td>
<td>small exudate</td>
</tr>
<tr>
<td>99-30</td>
<td>65/F</td>
<td>IC</td>
<td>6.5 h</td>
<td>many large</td>
<td>>100</td>
<td>large GA</td>
</tr>
<tr>
<td>99-35</td>
<td>76</td>
<td>RF</td>
<td>8 h</td>
<td>few large</td>
<td>none</td>
<td>mild atrophy</td>
</tr>
<tr>
<td>00-17</td>
<td>94</td>
<td>CNSF</td>
<td>15.5 h</td>
<td>many large</td>
<td>>100</td>
<td>large GA</td>
</tr>
<tr>
<td>00-18</td>
<td>71/F</td>
<td>MI</td>
<td>10 h</td>
<td>few</td>
<td>none</td>
<td>large exudate</td>
</tr>
<tr>
<td>00-32</td>
<td>66/M</td>
<td>COPD</td>
<td>5 h</td>
<td>few large</td>
<td>4</td>
<td>mild atrophy</td>
</tr>
<tr>
<td>00-69</td>
<td>76/D</td>
<td>CA</td>
<td>17 h</td>
<td>few</td>
<td>none</td>
<td>mild atrophy</td>
</tr>
<tr>
<td>00-1746</td>
<td>81/F</td>
<td>CA</td>
<td>3.5 h</td>
<td>many large</td>
<td>2</td>
<td>mild atrophy</td>
</tr>
</tbody>
</table>

RESULTS

To learn more about the prevalence of Aβ deposits in drusen and the association of these deposits with AMD pathology we used ICC to detect Aβ in normal and AMD post mortem retinas. To test and optimize ICC, we first detected Aβ in amyloid plaques from Alzheimer’s brains. Aβ label in plaques (Figure 1A, arrows) was blocked by pre-adsorption of antibody with Aβ peptide, verifying specificity (Figure 1B). The pink color remaining in Figure 1B is from tissue autofluorescence. Plaques were detected with our polyclonal antibody pAb 2332 as well as commercially available antibodies mAb 6E10 and 4G8 (not shown).

Sections from each of 18 retinas were then immunostained with Aβ antibodies. Nine of the retinas were from donors with normal eyes and 9 with AMD as defined by histologic detection of drusen and at least some RPE and/or photoreceptor loss. Three retinas had drusen and minimal RPE and photoreceptor loss (early AMD), 3 had geographic atrophy (GA), and 3 had exudative AMD (Table 1). Four of the 9 AMD retinas and none of the normal retinas had Aβ positive drusen. Two early AMD retinas had a few Aβ positive vesicles in a few

Table 1. Number of Aβ positive vesicles in AMD and control retinas

<table>
<thead>
<tr>
<th>Case</th>
<th>Age/Sex</th>
<th>COD</th>
<th>PMI</th>
<th>Drusen</th>
<th>Aβ vesicles</th>
<th>Other pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-10</td>
<td>79/F</td>
<td>CPDN</td>
<td>4.5 h</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>96-30</td>
<td>65/M</td>
<td>MI</td>
<td>4 h</td>
<td>few small</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>96-25-00</td>
<td>74/F</td>
<td>CNSF</td>
<td>4.5 h</td>
<td>few small</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>99-11-23</td>
<td>NA</td>
<td>SURG</td>
<td>NA</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>00-0155</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>00-1064</td>
<td>75/M</td>
<td>CA</td>
<td>4.25 h</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>00-0260</td>
<td>75/M</td>
<td>CA</td>
<td>1 large</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>00-44</td>
<td>78/E</td>
<td>PE</td>
<td>20 h</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>1-41</td>
<td>92/M</td>
<td>CA</td>
<td>2.5 h</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Number of Aβ positive vesicles in AMD and control retinas per 5 cm combined length of sections analyzed. COD: cause of death, PMI: post mortem interval, CA: cancer, IC: intracranial bleed, RF: respiratory failure, CHF: congestive heart failure, PNEU: pneumonia, MI: myocardial infarction, COPD: chronic obstructive pulmonary disease, SURG: this eye was surgically removed for squamous cell tumor in the orbit, PE: pulmonary embolus, NA: not available. Small drusen were <63 µm, Large drusen were >125 µm.

Figure 1. Aβ in brain amyloid plaques. Fluorescent photomicrographs showing Aβ in amyloid plaques (red fluorescence, arrows) in section from human Alzheimer’s brain Aβ (A). Plaque label was blocked by pre-adsorption of antibody with Aβ peptide, demonstrating specificity (B). Nuclei are stained with DAPI (blue). Scale bar represents 50 µm.
drusen, and 2 GA retinas had many Aβ positive vesicles in many drusen. All retinas with drusen contained at least some Aβ-negative drusen, as determined by immunolabeling serial sections through entire drusen.

Retina 00-11, from a donor with GA throughout much of the macula, had multiple large drusen at the temporal edge of the macula, where photoreceptors and RPE cells were still present, although there was some loss of photoreceptor nuclei. Aβ positive vesicles were detected in these drusen with all three anti-Aβ antibodies, but not with negative control anti-rhodopsin (red label-Figure 2A,B,D). Vesicles were not detected by the secondary antibody alone (Figure 2E). Pre-adsorption of the anti-Aβ antibody with Aβ peptide greatly diminished vesicular labeling (Figure 2C,G).

Retina 99-30, also from a donor with GA throughout much of the macula, had many vesicles in a region of sub-RPE de-

Figure 2. Aβ in drusen in GA retina 00-11. Fluorescent photomicrographs showing Aβ in drusen in GA retina 00-11. This donor had GA throughout much of the macula. A: Anti-Aβ mAb 4G8 label (red) is present in vesicles (arrowheads) within a large druse and photoreceptor outer segments at the temporal edge of atrophy. Nuclei are labeled with DAPI (blue). RPE cytoplasm appears gold due to lipofuscin autofluorescence. ONL: outer nuclear layer; OS: outer segments. B: Anti-Aβ pAb 2332 labels vesicles (arrowheads) within another large druse. C: Pre-adsorption with Aβ peptide eliminates label. D-G: are closely spaced sections labeled with anti-Aβ mAb4G8 (D), secondary antibody only (E), anti-rhodopsin antibody mAb 4D2 (F), and 4G8 pre-adsorbed with Aβ peptide (G). Of these four images, the only one with significant Aβ-positive vesicles is (D), verifying labeling specificity. Scale bar represents 50 μm.

186
Figure 3. Aβ in drusen in GA retina 99-30 near atrophic area. Fluorescent photomicrographs showing Aβ in drusen in GA retina 99-30. A: PAS-hematoxylin-stained low power view of edge of atrophy (atr). B: Anti-Aβ antibody 4G8 detects vesicles (arrowheads) in sub-RPE deposit. C: Pre-adsorption with Aβ peptide eliminates label. Scale bar represents 50 µm.

Figure 4. Single Aβ positive vesicle in early AMD retina 00-32. Fluorescent photomicrograph showing Aβ in drusen in early AMD retina 00-32. Arrowhead indicates single Aβ-positive vesicle underlying RPE atrophy and displacement into the subretinal space. Scale bar represents 50 µm.
Figure 5. Few Aβ positive drusen in early AMD retina 00-1676. Photomicrographs showing Aβ in only a few areas in early AMD retina 00-1676. A: PAS-hematoxylin-stained low power image with soft drusen and minimal photoreceptor atrophy. B: Anti-Aβ antibody 6E10 is negative in this section. C: In another area, anti-Aβ antibody 2332 detects a single vesicle and punctate granular deposits within drusen. Image was acquired by confocal microscopy. Scale bar represents 50 µm.

Figure 6. Exudative AMD retina 00-17. Photomicrograph of exudative AMD retina 00-17 stained with PAS-hematoxylin. This retina had no Aβ-positive vesicles on ICC (not shown). Thick exudative scar (S) is present on the right. Photoreceptors (PR) are present just temporal (to the left) to scar. Further temporal, the RPE monolayer is present, with minimal sub-RPE deposit. Scale bar represents 50 µm.
positional beginning at the margin of atrophy, 1 mm temporal to
the foveola and continuing another 2 mm temporal. The con-
centrations of vesicles was highest near the margin of atrophy
(Figure 3A). Pre-adsorption of antibody with Aβ peptide
blocked vesicular labeling, demonstrating specificity (Figure
3B).

Two retinas with minimal photoreceptor and RPE atro-
phy had a few Aβ-positive vesicles. Retina 00-32 had a few
large drusen and focal areas of free RPE cells in the subretinal
space. Associated with these RPE abnormalities were a few
Aβ-positive vesicles (Figure 4). This retina had minimal pho-
toreceptor atrophy, Retina 00-1676 had many small and large
drusen, and mild RPE atrophy (Figure 5A). While most of
these drusen had no Aβ immunoreactivity (Figure 5B), a few
had both Aβ-positive vesicles and smaller granular Aβ par-
ticles visible on confocal microscopy (Figure 5C).

None of the three exudative AMD retinas had Aβ-positive
vesicles, but they also lacked large drusen. Retina 00-17
had a large exudative scar (Figure 6). In areas where RPE and
photoreceptors were present (left side of image), the sub-RPE
deposits were thin and Aβ negative. Similarly, none of the
normal eyes, some of which had small drusen, had Aβ-posi-
tive vesicles (not shown).

DISCUSSION

The pathogenesis of AD and AMD may be related. Aβ, a major
component of AD plaques, is also present in some drusen.
Some of the Aβ in drusen is in vesicles and co-localizes with
complement suggesting an association with inflammation [3].
We sampled retina sections from 18 eyes, 9 with AMD and 9
normal, to determine the frequency and distribution of Aβ
deposits in post mortem human eyes. We found Aβ-positive
vesicles in drusen in 4 of 9 AMD eyes and none in normal
eyes. The Aβ-positive vesicles were most numerous in GA
eyes, near edges of atrophy. A few Aβ-positive vesicles were
also present in drusen two AMD retinas with minimal RPE
and photoreceptor atrophy.

The vesicles were detected with 3 different anti-Aβ anti-
bodies. The label was blocked by pre-adsorption of each anti-
body with Aβ peptide, and was not present when Aβ antibody
was omitted. These results strongly suggest that the vesicles
contain Aβ.

The highest quantity of Aβ-containing vesicles occurred
near edges of atrophy in GA eyes, the area at risk for expan-
sion of GA [4,7,8]. The vesicles may either contribute to the
pathogenesis of cell death in these RPE and photoreceptors at
risk, or result from ongoing photoreceptor or RPE dysfunc-
tion or death. The vesicles are neither present in areas of se-
vere atrophy, where RPE cells and photoreceptors are absent,
nor in association with exudative scars lacking RPE cells and
photoreceptors. These findings suggest that the vesicles may
be cleared following RPE and photoreceptor apoptosis.

The most likely source of Aβ in drusen is the overlying
RPE cells, which are known to deposit material into drusen.
Like most other cell types, RPE cells express amyloid precur-
sor protein [3] (APP), a membrane glycoprotein cleaved by
proteases to produce the Aβ peptide. The biological functions
of Aβ are unclear, but both Aβ multimers and fibrils can be
neurotoxic [9]. The quantity of Aβ present in drusen may
depend upon alterations in protease activity producing Aβ and
upon its clearance rate.

The finding of a few Aβ-positive vesicles associated with
RPE abnormalities in early AMD suggests that Aβ may play a
role in the early phases of AMD pathogenesis. However, as in
the GA eyes, it is not clear whether the Aβ-positive vesicles
are a cause or result of RPE and photoreceptor degeneration.

Many drusen in normal and AMD eyes lacked Aβ posi-
tive vesicles, so the vesicles are not a consistent component
of drusen. Within AMD eyes, vesicles were apparent in both small
(<63 µm) and large drusen.

Confocal imaging revealed that Aβ signal within drusen
consisted not just of vesicles, but also of granular particles. It
is possible that the granular particles assemble into vesicular
structures, as Aβ peptides can self-assemble into spherical
configurations [10].

All three Aβ antibodies labeled drusen from 4 of 9 AMD
retinas. In contrast, these antibodies gave an inconsistent pat-
tern of photoreceptor outer segment labeling. Future studies
will employ additional Aβ antibodies and ELISA on retinal
extracts to further investigate this issue.

Our data reveal that Aβ in drusen is associated with de-
generating RPE and photoreceptors, suggesting that the Aβ
may contribute to or result from degeneration. The finding of
similarities in the pathogenesis of AMD and AD suggests that
much can be learned about one disease from the other. Anti-
Aβ therapies currently under development for AD may also
prove useful for AMD. Thus, further investigation of the role
of Aβ in AMD pathogenesis is warranted.

ACKNOWLEDGEMENTS

This work was supported by a Research to Prevent Blindness
Career Development Award, International Retina Research
Foundation, NIH (AG-10124, AG-11542, EY00417), Foun-
dation Fighting Blindness, Pennsylvania Lions Foundation,
F. M. Kirby Foundation, and the Paul and Evanina Bell Mackall
Foundation Trust.

We thank W. Tang and J. Smith for their contributions to this
work.

REFERENCES

1. Klein R, Wang Q, Klein BE, Moss SE, Meuer SM. The relation-
ship of age-related maculopathy, cataract, and glaucoma to vi-

2. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The rela-
tionship between oxidative/nitrative stress and pathological in-
clusions in Alzheimer’s and Parkinson’s diseases. Free Radic

Anderson DH. The Alzheimer’s A beta -peptide is deposited at
sites of complement activation in pathologic deposits associ-
ated with aging and age-related macular degeneration. Proc Natl

4. Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis
in age-related macular degeneration. Arch Ophthalmol 2002;
120:1435-42.

The print version of this article was created on 14 May 2003. This reflects all typographical corrections and errata to the article through that date. Details of any changes may be found in the online version of the article.