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Choroidal neovascularization (CNV) is the major cause
of severe vision loss in patients with age-related macular de-
generation (AMD)[1]. The neovascularization originates from
choroidal blood vessels and grows through Bruch’s membrane,
usually at multiple sites, into the sub-retinal pigmented epi-
thelial (RPE) space [2,3].  It may result in accumulation of
serum and/or blood beneath the RPE, a situation referred to as
pigment epithelial detachment (PED).  The RPE usually be-
comes incompetent, causing serous retinal detachment.  Of-
ten the neovascularization extends through the RPE into the
subretinal space resulting in increased fluid and often blood
in the subretinal space. Collection of fluid and/or blood in the
subretinal space makes the surface of the retina irregular such
that straight lines appear crooked to the patient, a condition
referred to as metamorphopsia. This is the most common pre-
senting complaint of patients with CNV.  Fluorescein angiog-
raphy is used to identify and localize the CNV, but usually
some or all of the CNV is obscured by RPE cells that prolifer-
ate and partially or completely surround the new vessels.  When
CNV cannot be well-localized by fluorescein angiography, it
is referred to as occult. Often there is a component of occult
CNV along with well-delineated or classic CNV.  If classic
CNV is present, the visual prognosis is worse than if there is
only occult CNV [4], suggesting that the response of the RPE
that obscures blood vessels may also favorably modify the
clinical course.  Over time there is growth of the new vessels
and accompanying proliferation of the RPE.  Subretinal hem-
orrhage stimulates this scarring process, but scarring also oc-
curs in its absence, and results in the death of overlying pho-
toreceptors and a permanent central scotoma [2].

If the new vessels of AMD patients presenting with CNV
can be localized with fluorescein angiography and do not ap-
pear to involve the fovea (a rare combination), an attempt is
made to eliminate the CNV with laser photocoagulation.  The
Macular Photocoagulation Study demonstrated that patients
treated with laser photocoagulation are less likely to experi-
ence severe visual loss than untreated patients, but initial ben-
efits are lost in the majority of patients due to recurrent CNV
[1]. When the CNV involves the center of the fovea, laser
photocoagulation can be considered to ablate the new vessels
and prevent further growth, thereby limiting the size of the
scar, but the fovea is destroyed, and reading vision is perma-
nently lost [5].  Several experimental approaches that destroy
subfoveal CNV while sparing the fovea are being tested, in-
cluding surgical removal of CNV [6], macular translocation
[7], and photodynamic therapy [8].  None of these approaches
deal with the underlying stimuli for neovascularization, and
for each, recurrences are a problem.  Drug treatments that block
stimuli for CNV growth would be a major advance, but devel-
opment of such treatment is hindered by our poor understand-
ing of the pathogenesis of CNV.  This article discusses clues
that can be used to generate testable hypotheses concerning
the pathogenesis of CNV and data that are currently available.

What can we extrapolate from neovascularization else-
where in the body? Angiogenesis is a critical process during
embryonic development and wound repair and occurs in al-
most all tissues of the body.  However, if the nature or extent
of the wound (insult) is such that stimuli are excessive and/or
inhibitory influences are compromised, then pathologies such
as CNV may result. Angiogenesis has several key steps, many
of which CNV is likely to share with neovascularization else-
where in the body, but the molecular signals involved in each
of these steps can vary and must be determined for the tissue
of interest. Endothelial cells differ in different parts of the body,
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and surrounding cells participate in the neovascular response
resulting in tissue-specific aspects.  As noted above, RPE cells
play a major role in CNV, but not in any other type of
neovascularization.

One key step in angiogenesis is alteration in the balance
between pro-angiogenic and anti-angiogenic factors.  Soluble
factors that have been demonstrated to stimulate angiogen-
esis in some systems include vascular endothelial growth fac-
tor (VEGF) [9], members of the fibroblast growth factor (FGF)
family [10], tumor necrosis factor-α(TNF-α) [11], insulin-like
growth factor I (IGF-I) [12,13], hepatocyte growth factor
(HGF) [14], and others.  Members of the transforming growth
factor-β (TGF-β) family have been shown to have anti-angio-
genic effects in some systems and inhibit endothelial cell mi-
gration and repair after injury [15].  It is not known which if
any of these factors are involved in CNV.

Along with soluble pro-angiogenic and anti-angiogenic
factors, extracellular matrix (ECM) molecules also participate
in several ways in the regulation of new blood vessel growth.
ECM molecules may bind and sequester soluble factors, pre-
venting them from activating receptors on endothelial cells
until they are released from the ECM by proteolysis [16-18].
ECM molecules may directly stimulate or inhibit endothelial
cell processes involved in angiogenesis by binding to integrins,
cell surface heterodimer receptors that when activated can
upregulate or downregulate various intracellular signaling
pathways [19,20]. Remodeling of the ECM may alter integrin-
mediated signaling in some types of endothelial cells and pro-
mote angiogenesis.  On the other hand, pro-angiogenic fac-
tors may act in part by altering expression of integrins on en-
dothelial cells [21]. Endothelial cells of dermal vessels have
increased expression of αvβ3 integrin when participating in
angiogenesis and αvβ3 antagonists block angiogenesis [22].

Another general principle is that pro-angiogenic factors
stimulate processes in endothelial cells, including proteolytic
activity, migration, proliferation, and tube formation [23,24].
Two proteolytic systems have been implicated in the break-
down of ECM during angiogenesis, one involving the uroki-
nase type of plasminogen activator (uPA) [25] and one in-
volving matrix metalloproteinases (MMPs) [26,27]. Are these
systems both important in the development of CNV or is one
relatively more important?  The answer to this question has
therapeutic implications, because both systems are modulated
by endogenous and pharmacological inhibitors that could po-
tentially be exploited in the design of treatments for CNV.

What can be extrapolated from angiogenesis elsewhere
in the eye?  Compared to CNV, much more is known about
neovascularization in the retina, which has a similar but not
identical microenvironment to the choroid.  Numerous clini-
cal and experimental observations have demonstrated the cen-
tral role of hypoxia or ischemia in the development of retinal
neovascularization [28-30].  Occlusion of retinal vessels lead-
ing to retinal ischemia is a feature shared by each of the dis-
ease processes in which retinal neovascularization occurs and
hence they are referred to as ischemic retinopathies.  Does
hypoxia play a role in the development of CNV?  The next
article in this series will discuss this possibility.  Briefly, there
is some suggestion that choroidal blood flow may be altered

in patients with AMD [31,32], but it is not clear if this is suf-
ficient to cause hypoxia.  Another possible source of hypoxia
that has been suggested is diffuse thickening of Bruch’s mem-
brane with lipophilic material decreasing diffusion of oxygen
from the choroid to the RPE and retina, but there are no data
to support this hypothesis.  Also, hypoxia is unlikely to be
present in other disease processes associated with CNV that
occur in young patients, such as ocular histoplasmosis.

Vascular endothelial growth factor (VEGF) is a major
stimulatory factor for retinal neovascularization.  It is unlikely
to be the only stimulatory factor, because insulin-like growth
factor I may also participate [13], but there is strong evidence
indicating that VEGF plays a central role.  It is upregulated by
hypoxia [33,34] and its levels are increased in the retina and
vitreous of patients [35-38] or laboratory animals [39,40] with
ischemic retinopathies.  Increased expression of VEGF in reti-
nal photoreceptors of rhodopsin/VEGF transgenic mice stimu-
lates neovascularization within the retina [41,42] and VEGF
antagonists partially inhibit retinal or iris NV in animal mod-
els [43-45].

Is VEGF a stimulatory factor for CNV?  There is circum-
stantial evidence suggesting that VEGF may be involved, be-
cause it is present in fibroblastic cells and transdifferentiated
RPE cells of surgically removed choroidal neovascular mem-
branes [46-48]. Also, in both rat and monkey models of laser-
induced choroidal neovascularization, increases in VEGF
mRNA are seen in RPE-like cells, choroidal vascular endot-
helial cells, and fibroblast-like cells in the lesions [49-51].
However, increased expression of VEGF in photoreceptors
does not result in CNV [41].  Therefore, additional studies are
needed to determine if VEGF is involved in the development
of CNV.

Compared to VEGF, there is much less evidence impli-
cating FGF2 in the development of retinal neovascularization.
Recently, using both FGF2 knockout mice and transgenic mice
that overexpress FGF2 in photoreceptors, Ozaki and associ-
ates demonstrated that FGF2 is neither necessary nor suffi-
cient for the development of retinal neovascularization [52].
Similarly, increased expression of FGF2 is neither necessary
nor sufficient for the development of CNV [53].  This does
not mean that FGF2 plays no role in the pathogenesis of CNV,
but if it does play a role, there must be something more than
just increased expression of FGF2 involved.  Perhaps in the
setting in which CNV occurs, there are conditions that increase
the amount of FGF2 in the extracellular space.  This would be
consistent with studies demonstrating that sustained release
of FGF2 in the subretinal space of minipigs [54] or rabbits
[55] results in choroidal neovascularization.

What is the setting in which CNV occurs in AMD? Clini-
cal risk factors for the development of CNV in patients with
AMD are large confluent drusen, pigmentary changes, and
choroidal neovascularization in the fellow eye [56].  Smoking
significantly increases the risk of CNV [57].  The strongest
pathological association with CNV is diffuse sub-RPE depos-
its [2].

Drusen and thickening of Bruch’s membrane are abnor-
malities of the ECM of the RPE.  Pigmentary changes are
usually due to drop out and/or proliferation of RPE cells, and
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pathologic studies confirm that these occur in patients with
AMD [58].  Smoking could contribute by exacerbating vas-
cular disease, but it is also a strong oxidative stress and could
worsen oxidative damage to the retina and RPE.  Oxidative
stress results in deposition of ECM along Bruch’s membrane
[59] and increased production of FGF2 in RPE cells [60].
Mousa and associates have demonstrated that exposure of
cultured RPE cells to certain ECM molecules, most notably
thrombospondin-1, increases VEGF and to a lesser extent
FGF2 in cell supernatants [61]. This suggests that alteration
of integrin signaling may influence externalization of VEGF
and FGF2 from RPE cells.  Taken together, these epidemio-
logical, pathological, and experimental data suggest that al-
teration of the ECM of RPE cells may play an important role
in the development of CNV in patients with AMD.

What are other diseases in which choroidal
neovascularization occurs and what do they have in common
with AMD? Diseases that lead to abnormalties or breaks in
Bruch’s membrane, such as Pseudoxanthoma Elasticum or high
myopia, in which Bruch’s membrane is thinned, have an in-
creased risk of CNV [62].  Mechanical (trauma) or thermal
(laser) damage to Bruch’s membrane are also associated with
increased risk of CNV.  A third category of increased risk is
inflammatory diseases of the choroid such as multifocal chor-
oiditis or ocular histoplasmosis.  Finally, there is Sorsby’s
Fundus Dystrophy, an autosomal dominant inherited disease
in which patients have deposits along Bruch’s membrane and
high incidences of CNV [63,64].  Some patients with Sorsby’s
have mutations in the tissue inhibitor of metalloproteinases 3
(TIMP-3) gene, which has a product that is involved in regu-
lation of ECM turnover [65]. Therefore, these diseases and
AMD all exhibit abnormalities in or around Bruch’s mem-
brane suggesting that alteration of the ECM of the RPE pre-
disposes the development of CNV.

What can we learn about the pathogenesis of CNV from
animal models? Rupture of Bruch’s membrane with laser pho-
tocoagulation is a reliable way to produce CNV and has been
used to establish models in primates [66], rabbits [67], rats
[68,69], and mice [53].  Sustained release of FGF2 in minipigs
[54] or rabbits [55] and sustained release of VEGF in primates
[70] also causes CNV.  However, as noted above, increased
expression of VEGF or FGF2 in photoreceptors of transgenic
mice does not result in CNV [41,52].  Perhaps surgical trauma
to Bruch’s membrane, resulting in disturbed ECM of the RPE
and/or perturbation of an endogenous inhibitor such as TIMP-
3, is a critical component of sustained release models that is
absent from overexpression models. Additional studies are
needed to determine if Bruch’s membrane provides a physical
and/or biochemical barrier to CNV.  Demonstration of the
molecular nature of any biochemical barrier would provide
an important target for therapeutic intervention.

CONCLUSIONS
CNV is the major cause of severe loss of vision in patients
with AMD. Treatments directed at ablating the new vessels
are plagued by recurrences.  Development of drug treatments
that counteract the stimuli for new blood vessel growth are
hindered by poor understanding of the pathogenesis of CNV.
However, recent progress provides a framework for genera-

tion of experimental questions that could provide important
new insights. A reasonable working hypothesis is that abnor-
malities of ECM in or around Bruch’s membrane result in al-
tered gene expression in RPE cells which favors development
of CNV. New experimental techniques that allow manipula-
tion of gene expression in the retina, RPE, or choroid should
make it possible to answer experimental questions derived from
this hypothesis and provide the knowledge necessary for ra-
tional design of drug treatment.
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