
306

Glaucoma is a group of progressive optic neuropathies 
leading to blindness through optic disc neurodegeneration 
from retinal ganglion cell apoptosis [1,2]. Glaucoma is 
divided into early-onset glaucoma (before 40 years) and late-
onset glaucoma (after 40 years). Early-onset includes primary 
congenital glaucoma (PCG), with neonatal (0-1 month) and 
infantile (1-24 months) subtypes, and juvenile open-angle 
glaucoma (JOAG) starting from age 3 years [3-5].

PCG and JOAG have strong genetic bases, with patho-
genic variants in genes such as CYP1B1 and MYOC being 
among the most frequently identified, making them key 
targets for genetic testing [5-7]. Next-generation sequencing 
(NGS) and whole-exome sequencing (WES) have advanced 
the understanding of monogenic forms of PCG and JOAG by 
identifying genes linked to ocular balance and intraocular 
pressure (IOP) regulation [8,9]. These new techniques support 
accurate diagnosis and genetic counseling, sometimes 

enabling preventive measures to avoid visual loss. However, 
the cause remains unknown for many families. Early detec-
tion of glaucoma is crucial, as decreasing IOP is the only 
current tool to halt its progression [1,10]. Suspected cases 
require initial treatment with IOP-lowering eye drops; if 
ineffective, surgery may be needed. Early management 
improves prognosis and may prevent surgery. The objectives 
of this study are to genetically evaluate Spanish patients with 
PCG and JOAG. In addition, it aims to assess the potential of 
WES to provide accurate diagnoses and to explore the genetic 
factors contributing to these conditions.

METHODS

Patients: We studied 28 patients with PCG (6 patients) or 
JOAG (22 patients). Patients with angle-closure glaucoma 
and secondary glaucoma were excluded. The diagnostic 
criteria for PCG and JOAG were based on the European Glau-
coma Society Guidelines [11] and the Childhood Glaucoma 
Research Network guidelines [12]. PCG was diagnosed in 
patients who had an onset before 2 years of age, presented 
with elevated IOP, and had a medical history of corneal 
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enlargement, Haab striae, and optic nerve cupping. JOAG was 
defined by onset after early childhood, with open angles on 
gonioscopy, elevated untreated IOP, glaucomatous optic nerve 
damage, and often a family history, frequently involving 
MYOC variants.

All patients underwent a complete ophthalmic examina-
tion, including slit-lamp evaluation of the anterior segment 
and IOP measurement with a Goldmann tonometer. In addi-
tion, ancillary tests were performed, such as gonioscopy, 
pachymetry, Humphrey visual field, and Cirrus optical coher-
ence tomography of the optic nerve and macula. Glaucoma 
stage was categorized by the mean deviation (MD) from the 
visual field test using the Hoddap-Parrish-Anderson criteria: 
early (MD ≥ −6 dB), moderate (−6 dB > MD ≥ −12 dB), and 
severe (MD < −12 dB) stages [13]. Both eyes were taken 
into consideration unless there was phthisis bulbi, ocular 
hypertension or lack of pathology, or a missing fellow eye 
due to evisceration or enucleation. The investigation followed 
the principles established in the Declaration of Helsinki. 
The research protocol received approval from the ethics 
committee (HCB/2023/0220).

Genetic studies: Written informed consents for genetic testing 
were obtained from all patients and relatives when neces-
sary. CYP1B1 and MYOC genes were amplified by specific 
oligonucleotides (Appendix 1) and directly sequenced. WES 
was performed in a subset of patients who tested negative 
for pathogenic or likely pathogenic variants in CYP1B1 and 
MYOC. These families were selected based on clinical and 
familial criteria suggestive of a stronger genetic component. 
Specifically, selection was guided by features such as early 
age of onset, high familial burden, high penetrance, a severe 
disease course with poor visual prognosis, the need for 
multiple surgical interventions, and poor response to conven-
tional treatments. Moreover, three patients (11%) exhibited 
syndromic features (additional physical or developmental 
anomalies suggestive of an underlying syndrome).

Additionally, the Nextera Flex for Enrichment massive 
sequencing protocol was followed with complete exome 
probes (Illumina, San Diego, CA, USA) and subsequent 
sequencing on the NextSeq550 platform. Primary and 
secondary bioinformatic analysis of the data obtained was 
performed using the coreBM-EX-1.1.0 pipeline, developed 
at the Hospital Clínic de Barcelona. WES analysis relied on 
a virtual custom panel, including genes commonly linked 
to glaucoma and glaucoma-related syndromes (Appendix 
2). The virtual panel of genes was assembled based on a 
comprehensive review of the literature and curated databases, 
including OMIM, Orphanet, HGMD, and PanelApp. Genes 
were selected for their known association with early-onset 

glaucoma or glaucoma-related syndromes, as well as for their 
biologic relevance to ocular development and IOP regulation.

The Jnomics platform was used for annotation and 
variant prioritization according to frequency, quality, 
coverage, and possible pathogenicity. A rare variant filter 
(allele frequency <0.5%) was applied to coding exons and 
f lanking intronic regions (15 pb) of the analyzed exons. 
Untranslated regions were not analyzed. The coverage of the 
analyzed regions was a minimum of 20×. Furthermore, copy 
number variants were studied using the ExomeDepth tool [14] 
in Jnomics. Population allele frequencies were obtained from 
the gnomAD database (version 4.1.0), using general popu-
lation data as the reference. Final interpretation of variants 
was performed based on the American College of Medical 
Genetics and Genomics guidelines [15], classifying variants 
as benign, likely benign, uncertain significance (VUS), likely 
pathogenic, or pathogenic.

Segregation analysis was performed in available relatives 
(families 1 to 5). Relatives were unavailable for families 6 and 
7. Primers used are listed in Appendix 1.

RESULTS

Of the 28 patients included in the study, 22 patients had a 
family history of glaucoma (79%), and 25 patients had 
bilateral glaucoma (89%). Information about the stage of 
glaucoma and surgery per eye is summarized in Table 1. 
Pathogenic or likely pathogenic variants in CYP1B1 and 
MYOC were identified in three patients (10%). The clinical 
and epidemiological characteristics of the probands from 
each family with genetic variants are summarized in Table 
2. Since WES is newly implemented in our laboratory, it was 
performed on only 11 (44%) patients with negative CYP1B1 
and MYOC results, identifying disease-causing variants in 3 
patients (27%; Table 3), all of whom had syndromic features. 
In addition, a VUS was found in one patient without other 
pathogenic or likely pathogenic variants. No copy number 
variants were detected.

Genetic variants were detected in four patients with PCG 
(one neonatal and three infantile cases) and in three patients 
with JOAG (Table 3). Figure 1 and Figure 2 show the detected 
variants and the pedigrees of each family, respectively.

Family 1: A 22-year-old woman with neonatal glaucoma 
(PCG) underwent goniotomy and trabeculectomy in both eyes 
as an infant, followed by cataract–Ahmed valve surgery in 
her right eye (RE). She had severe refractory glaucoma in her 
left eye (LE), despite medication leading to a successful Paul 
device implantation with satisfactory IOP control since then. 
Genetic testing revealed two pathogenic CYP1B1 variants in 
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compound heterozygosity: c.840C>A (p.Cys280Ter; Figure 
1A) and c.1064_1076del (p.Arg355HisfsTer69; Figure 1B), 
both classified as disease-causing with a low population 
frequency (0.001% and 0.02%, respectively). Segregation 
studies confirmed that the patient inherited the CYP1B1 
c.840C>A variant from her mother and the c.1064_1076del 
variant from her father (Figure 2A). Both parents were 
asymptomatic, and the brother did not carry any pathogenic 
variant.

Family 2: A 66-year-old woman with severe JOAG was diag-
nosed at age 20 years. She had a family history of glaucoma 
(father and siblings) and required trabeculectomy in her 

RE and sclerectomy in her LE (Figure 3). We identified the 
variant c.1139A>C (p.Asp380Ala) in heterozygosity in the 
MYOC gene (Figure 1C). A previous study showed that this 
variant has reduced secretion levels compared to wild-type 
myocilin protein [16], which has a deleterious effect on the 
protein function. This variant, reported in several patients 
with glaucoma, was detected in all affected relatives and 
absent in symptom-free relatives (Figure 2B), supporting its 
classification as pathogenic.

Family 3: A 23-year-old man was diagnosed with JOAG 
at age 7 years and initially managed his IOP with timolol-
dorzolamide in both eyes. However, his IOP spiked to 38 mm 

Table 1. Clinical features of the patients included in the study.

Various Onset
PCG 
n=6 patients 
(10 eyes)

JOAG 
n=22 patients 
(43 eyes)

PCG subcategory
Neonatal onset 1 (17%) -
Infantile onset 5 (83%) -

Gender
Female 3 (50%) 9 (41%)
Male 3 (50%) 13 (59%)

Family history of glaucoma
Yes 2 (33%) 20 (91%)
No 4 (67%) 2 (9%)

Eye laterality
Unilateral * 2 (33%) 1 (5%)
Bilateral 4 (67%) 21 (95%)

Stage of glaucoma per eye
Initial 3 (30%) 19 (44%)
Moderate 1 (10%) 10 (23%)
Severe 6 (60%) 14 (33%)

Surgery/laser per eye

Glaucoma surgery 4 (40%) 10 (23%)
Glaucoma surgery + Other 
surgery 4 (40%) 12 (28%)

Glaucoma laser # - 7 (16%)
Other surgery - 5 (12%)
No surgery 2 (20%) 9 (21%)

JOAG: juvenile open-angle glaucoma; PCG: primary congenital glaucoma. * Unilateral because of phthisis bulbi, ocular hypertension, 
or absence of the other eye. # Iridotomy or laser trabeculoplasty

Table 2. Clinical and epidemiological characteristics of the probands from 
each family with genetic variants reported in this study.

Family Gender Age at 
diagnosis Group Stage of 

glaucoma Eye laterality Family history of glaucoma

1 Female Birth Neonatal Severe Bilateral No
2 Female 20 years Juvenile Severe Bilateral Yes (father, two siblings)
3 Male 7 years Juvenile Moderate Bilateral Yes (mother, sister)
4 Male 1 year Infantile Severe Bilateral Yes (brother, father)
5 Female 4 years Juvenile Moderate Bilateral Yes (mother, brother)
7 Female 4 months Infantile Moderate Bilateral No
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Hg in the RE and 34 mm Hg in the LE. Despite a preserved 
optic nerve head appearance (Figure 4A), an initial optic 
nerve fiber loss was detected (Figure 4B). Finally, the patient 
was scheduled for trabeculectomy in both eyes, resulting in 
controlled IOP without further medication. Genetic testing 
revealed the variant c.1150G>A (p.Asp384Asn) in heterozy-
gosity in the MYOC gene (Figure 1D). This variant, with a 
low population frequency (0.0007%), had only been reported 
in Chinese affected families [17-19]. Segregation studies 
confirmed its presence in affected relatives and absence in 
healthy individuals (Figure 2C). Hence, the variant was clas-
sified as likely pathogenic. The patient’s nieces (aged 5 and 
2 years), while carrying the familial variant, have not shown 
any glaucoma manifestation to date.

Family 4: A 33-year-old man was diagnosed with infantile 
PCG glaucoma at age 1 year, requiring multiple interven-
tions. He also exhibited micrognathia, dental crowding, 
hypertelorism, a broad forehead, impaired balance (possibly 
related to cerebellar vermis hypoplasia), and severely 
impaired visual acuity. His brother had a similar clinical 
presentation. NGS analysis revealed the heterozygous variant 
c.257T>C (p.Leu86Pro) in the FOXC1 gene (Figure 1E), 
associated with Axenfeld-Rieger syndrome. This variant has 

not been previously described in the general population but 
was recently reported in a patient with glaucoma, congenital 
nasolacrimal duct obstruction, corectopia, posterior embryo-
toxon, and iridocorneal adhesions [20]. Furthermore, multiple 
variants at the same position (p.Leu86) had been reported, 
all of them causing disease [21,22]. Although the p.Leu86Pro 
variant results in a stable protein product, it still has the 
potential to disrupt FOXC1 function and severely affect the 
nuclear localization of the protein, affecting DNA binding 
[21]. Segregation analysis confirmed the variant in the brother 
but not in the unaffected mother, while the father was not 
available for the study (Figure 2D). Consequently, the variant 
was classified as pathogenic.

Family 5: A 36-year-old woman was diagnosed with JOAG 
at age 4 years. She underwent combined cataract-trabecu-
lectomy surgery in late childhood and recently had a Paul 
device implanted in her LE due to glaucoma progression. 
The patient showed significant lordosis, leading to joint pain 
and bowlegs. Her mother and brother also exhibited similar 
clinical manifestations. The c.3137dup (p.Gly1047TrpfsTer11) 
variant was detected in the COL2A1 gene (Figure 1F), associ-
ated with Stickler syndrome type I. Loss-of-function variants 
in the COL2A1 gene have been considered pathogenic [23]. 

Figure 1. Chromatograms show the presence of some genetic variants detected in this study. CYP1B1 variants were detected in the index 
case in family 1 (A, B). MYOC variants were found in the index cases in families 2 (C) and 3 (D). The FOXC1 variant was detected in the 
siblings of family 4 (E), and the COL2A1 variant was found in family 5 (F).
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Figure 2. Representations of family trees. Family 1 (A), Family 2 (B), Family 3 (C), Family 4 (D), and Family 5 (E) are represented. Round 
symbols denote females, square symbols denote males; fully filled symbols indicate patients with congenital or juvenile glaucoma; unfilled 
symbols represent unaffected individuals; and symbols with a black dot inside correspond to unaffected individuals carrying genetic variants 
(observed only in Family 3).

Figure 3. Fundoscopic examination of the index case in family 2 showed optic discs with well-defined margins that were somewhat pale, 
with optic disc cupping of 0.5 in the right eye (RE) and 0.7 in the left eye (LE). The superior neuroretinal rim was decreased in the RE and 
diffusely thinned in the LE. No hemorrhages were observed. These findings are consistent with moderate-to-severe glaucoma. Drusen were 
dispersed in the posterior pole. The RE displayed filiform vessels and had undergone panretinal photocoagulation due to a previous central 
retinal vein occlusion. The RE presents filiform vessels and underwent panretinal photocoagulation due to a previous central retinal vein 
occlusion (RE). LE, left eye; RE, right eye.
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This variant has not been found in the general population but 
was identified in a patient with Stickler syndrome [23]. Addi-
tionally, it was confirmed to be present in both the affected 
mother and brother (Figure 2E), leading to its classification 
as pathogenic.

Moreover, the variant c.1103G>A in the CYP1B1 gene 
was detected in heterozygosity in the index case and her 
mother (but not her brother). Prediction programs suggest 
possible pathogenicity, but this variant is present, even in 
homozygosity, in the general population (0.2%), mainly in 
South Asian populations [24]. For this reason, it was classi-
fied as a VUS.

Family 6: A 39-year-old woman with severe PCG in her LE 
and pupillary seclusion due to her condition (Figure 5) was 
diagnosed at age 1 year. She also had ocular hypertension 
in her RE and a history of collapsing focal and segmental 
glomerulosclerosis (cFSGS). The variant c.2683C>T 

(p.Arg895Cys) was detected in heterozygosity in the TRPC6 
gene. This variant has not been described in the general popu-
lation and has been reported as a de novo occurrence in other 
patients with cFSGS [25]. Although an association between 
the TRPC6 gene and glaucoma has been suggested in the 
literature [26], evidence is insufficient to support this link. 
Therefore, the variant was classified as likely pathogenic, 
pending further validation of its association with glaucoma.

Family 7: The heterozygous variant c.1311+5G>C in the 
COL18A1 gene was found in a 33-year-old woman with 
infantile-onset PCG detected at 4 months. She underwent 
trabeculectomy in both eyes in early infancy, followed by 
cataract extraction and retinal detachment surgery in the 
LE. This variant has a low frequency of 0.02%. Prediction 
programs for splice-affecting variants have been inconsistent, 
and their impact on splicing needs confirmation via RNA 
analysis, so this variant was classified as a VUS.

Figure 4. The figure shows the ophthalmologic findings of the index case in family 3. Optic disc photographs of the right eye (RE) and left 
eye (LE) show a relatively preserved neuroretinal rim in both eyes (A). Retinal nerve fiber layer (RNFL) analysis performed with Cirrus 
optical coherence tomography (OCT) reveals a superior defect in the RE, indicating early RNFL loss consistent with mild to moderate 
glaucoma in this eye (B). LE, left eye; RE, right eye; RNFL, retinal nerve fiber layer.
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DISCUSSION

Currently, there are no established guidelines for genetic 
testing in glaucoma. The American Academy of Ophthal-
mology suggests testing only if it impacts treatment or 
surveillance, prioritizing patients with clinical signs of 
Mendelian disorders. Thus, genetic testing is ideal for those 
with PGC or JOAG during childhood or young adulthood 
[27].

Our center initially offered genetic testing of CYP1B1 and 
MYOC, key genes in early-onset glaucoma [5,6]. However, 
WES has emerged as a comprehensive and cost-effective 
approach for identifying pathogenic variants, making 
direct WES testing feasible for patients with suspected 
genetic early-onset glaucoma [28,29]. The diagnostic yield 
in our sequenced cohort was 21%, aligning with the 19% 
reported by others [7]. However, we acknowledge that this 
is a preliminary diagnostic rate, as WES was performed in 
only 11 patients who were negative for CYP1B1 and MYOC. 
Therefore, the overall yield is expected to increase as WES 
is extended to the remaining unsolved cases.

Based on genetic findings, patients in our cohort can be 
classified into two groups: (1) those with isolated PCG or 
JOAG linked to pathogenic variants in CYP1B1 (family 1) 
and MYOC (families 2 and 3) and (2) those with syndromic 
forms of early-onset glaucoma (families 4, 5, and 6). Notably, 
three of the six genetically diagnosed cases with pathogenic 
or likely pathogenic variants were associated with syndromic 
glaucoma, highlighting the added diagnostic value of WES 
beyond isolated ocular findings. These results emphasize the 
importance of adopting a broader genetic approach in patients 

with atypical phenotypes or systemic involvement. Early 
identification of syndromic conditions can guide multidisci-
plinary management and genetic counseling. Prior to genetic 
testing, a comprehensive evaluation of family history and 
associated clinical features is essential to identify potential 
syndromic presentations.

After genetic testing, a visit to a genetic counselor is 
essential to identify at-risk relatives for early diagnosis and 
treatment, understand inheritance patterns, and explore 
family planning options [6]. For example, the index case 
in family 1 will transmit a mutated CYP1B1 allele to all 
offspring, but disease manifestation depends on the other 
parent’s carrier status. In contrast, other index cases had 
early-onset glaucoma with autosomal dominant inheritance, 
giving offspring a 50% risk of inheriting the altered allele and 
developing the disease.

Cascade genetic testing enables targeted testing and 
surveillance for relatives of patients with early-onset glau-
coma with the same pathogenic variant as the index case, 
while reassuring those without the variant that their glaucoma 
risk is no higher than the general population. For instance, in 
family 1, the index case had two pathogenic CYP1B1 vari-
ants (one from each parent), but her brother did not inherit 
either, placing him at no increased risk. Similarly, in family 
2, descendants of individuals with MYOC mutations did not 
carry the familial variant, meaning they are not at higher risk 
for JOAG.

It is noteworthy that, in family 3, genetic testing allowed 
presymptomatic diagnosis in two nieces of the index case, 
aged 5 and 2 years, who carried the variant but showed no 

Figure 5. This figure shows an 
anterior segment photograph of the 
index case in family 6. The image 
shows pupillary seclusion in the left 
eye secondary to her clinical condi-
tion of severe primary congenital 
glaucoma.
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glaucoma signs. Early diagnosis will allow prompt treatment 
before irreversible damage occurs. This case underscores the 
benefits of genetic testing for relatives of patients with PCG 
or JOAG, especially minors, with parental consent [30]. For 
positive cases without optic nerve or visual field damage, 
regular IOP monitoring is essential. In the case of a positive 
genetic test result, Leysen et al. [6] recommend four exams 
in the first year, followed by every 6 months for 2 years, and 
annually thereafter if no signs of glaucoma appear. While 
these follow-up recommendations are derived from PCG 
surveillance protocols, their application in MYOC-related 
JOAG may require adaptation, given the broader range of 
age of onset and variable expressivity associated with this 
form of glaucoma.

In family 5, a pathogenic variant in COL2A1 (associated 
with Stickler syndrome) was identified, along with a hetero-
zygous CYP1B1 variant (c.1103G>A). Although CYP1B1 
typically causes primary congenital glaucoma through auto-
somal recessive inheritance, several studies have proposed 
that heterozygous loss-of-function or hypomorphic variants 
may increase susceptibility to adult-onset primary open-
angle glaucoma, rather than causing early-onset forms of the 
disease [31-33]. These variants have been shown to impair 
enzymatic activity and alter protein stability, suggesting a 
possible modifying effect on glaucoma risk. Nonetheless, 
as noted by Nolan et al. [34], the clinical interpretation of 
such variants remains difficult and must be approached with 
caution. In a recent study by our group, heterozygous CYP1B1 
variants were found in 5 of 61 patients with primary late-
onset open-angle glaucoma, making it the most frequently 
affected gene in that cohort [35]. In the case of family 5, the 
coexistence of the CYP1B1 variant with a pathogenic COL2A1 
mutation complicates interpretation, but the COL2A1 variant 
is the most plausible explanation for the phenotype. Interest-
ingly, the CYP1B1 variant was absent in the patient’s affected 
brother, prompting us to explore phenotypic differences 
within the family; however, follow-up was not possible due 
to relocation.

Regarding family 6, a likely pathogenic variant in the 
TRPC6 gene was identified. This gene, along with other 
TRPC channels and transmembrane proteins such as podocin, 
forms mechanosensitive complexes that are involved in 
sensing glomerular pressure. This pressure-sensing function 
is critical in the pathogenesis of glomerular diseases such 
as cFSGS, where TRPC6 variants lead to abnormal calcium 
influx and podocyte damage. Given the shared pressure-
related mechanisms in both the kidney and the eye, it is plau-
sible that similar TRPC6-mediated pathways may contribute 

to retinal ganglion cell damage in glaucoma. In both contexts, 
elevated mechanical stress—glomerular pressure in the 
kidney and IOP in the eye—can lead to cellular dysfunction 
and degeneration via calcium overload [36,37]. Therefore, 
TRPC6 may represent a common molecular link between 
glomerular disease and glaucoma [26,38], supporting its role 
as a potential therapeutic target in pressure-related neurode-
generation, but further investigation is needed.

This study highlights the value of genetic analysis in 
diagnosing early-onset glaucoma. In our cohort, 21% of 
patients were diagnosed (6 of 28, corresponding to families 
1 to 6), but many cases remain undiagnosed (22 of 28), indi-
cating unidentified disease-causing variants.

Currently, therapies are focused on lowering IOP 
with medication, laser, or surgery. However, technological 
advances have brought gene therapy to the forefront. Recently, 
CRISPR/Cas9 system has emerged as a promising genome-
editing tool in many medical fields, including glaucoma [39]. 
Jain et al. [40] used CRISPR/Cas9 to disrupt mutant MYOC 
genes in human and mouse trabecular meshwork cells and in 
a mouse model (Tg-MYOCY437H). This disruption reduced IOP 
by decreasing the accumulation of misfolded protein inside 
trabecular meshwork cells. Additionally, since the accumu-
lation of misfolded protein causes MYOC-associated JOAG, 
chaperones that assist in proper protein folding may offer an 
alternative treatment strategy [41]. In this context, genetic 
studies will become increasingly relevant in identifying 
candidates for future gene-based therapies and enabling more 
personalized approaches to glaucoma management. Given the 
limited sample size and partial application of WES, this work 
is presented as a pilot descriptive case series. It is intended to 
generate preliminary insights into the genetic landscape of 
early-onset glaucoma.

In conclusion, the advent of NGS has improved the 
diagnosis of early-onset glaucoma by allowing the study of 
a larger number of genes. In some cases, it enables presymp-
tomatic diagnosis in at-risk relatives, before glaucoma symp-
toms appear. This represents a clinical benefit, as in a state 
where optic nerve alterations are not yet present, it is crucial 
to conduct regular assessments to measure IOP, facilitating 
early diagnosis of glaucoma and preventing vision loss.

APPENDIX 1. SUPPLEMENTARY TABLE 1. 

To access the data, click or select the words “Appendix 1.” 
Amplification and direct sequencing of CYP1B1 and MYOC 
genes, and the exons where variants were detected in the 
FOXC1 and COL2A1 genes, using specific oligonucleotides.
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APPENDIX 2. SUPPLEMENTARY TABLE 2.

To access the data, click or select the words “Appendix 2.” 
List of genes included in the gene panel for the study of 
glaucoma.
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