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Retinal vascular diseases, such as diabetic retinopathy 
(DR), can cause irreversible vision loss. With the popula-
tion’s increase in age and lifestyle changes, the incidence 
of these diseases is increasing every year [1-3]. The main 
pathological change in DR is damage to retinal endothelial 
cells (ECs), which leads to retinal neovascularization [4]. The 
current treatments for these diseases, including antivascular 
endothelial growth factor (VEGF) therapy, are not satisfac-
tory, as they do not fundamentally prevent the progression of 
the diseases [5,6]. Maintaining or restoring the function of 
RPECs or ECs is essential.

Mesenchymal stem cell (MSC) therapy, due to its unique 
advantages, such as cell replacement, environmental regen-
eration, paracrine, and no immune rejection [7,8], brings 
hope for intractable retinal diseases and has been proven to 
have positive results [9,10]. Many studies have confirmed 
that MSCs could promote angiogenesis [11,12]. However, 
one study showed that human Wharton’s jelly-derived MSCs 
were differentiated to express human leukocyte antigen DR 
(HLA-DR) after intravitreal transplants, which can lead to 
severe retinal inflammation [13]. Moreover, another report 
showed that one patient developed fibrosis proliferation after 
MSC intravitreal transplantation [14]. The differentiation, 

proliferation, prognosis, and safety of MSCs for in vivo 
therapy remain controversial. However, among the different 
tissue sources of MSCs, adipose mesenchymal stem cells 
(ADMSCs) and bone marrow-derived stem cells (BMSCs) 
are mainly studied, and they exhibit similar surface molecular 
markers and differentiation abilities [15]. ADMSCs are easier 
to obtain, have higher proliferation rates than BMSCs, and 
thus have more extensive prospects [16,17]. Therefore, in this 
study, we assessed the ability of human adipose mesenchymal 
stem cells (hADSCs) to express the characteristics of ECs 
after induction in vitro to evaluate the theoretical feasibility 
of maintaining or restoring the function of ECs after intraoc-
ular application. Then, hADSCs were intraocularly injected 
into a pathological model (oxygen-induced retinopathy [OIR] 
model) to check the movement trajectory, fusion, prolifera-
tion, and prognosis of the hADSCs in the intraocular applica-
tion using morphological methods. Finally, electron micros-
copy and hematoxylin and eosin (H&E) staining were used 
to assess retina changes to confirm the safety of intraocular 
use of hADSCs. The findings provide theoretical support for 
the intraocular application of hADSCs.

METHODS

Culture, characterization, and labeling of hADSCs: The 
second passage of hADSCs was obtained from the Tissue 
Engineering Center of Peking Union Medical College, China. 
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The hADSCs were recovered in 37 °C warm water, added 
to the culture medium, and cultured in a humidified incu-
bator. Then, 48 h later, one-half of the culture medium was 
replaced, and the cells were subcultured every 3–4 days or 
at 80% confluence. The third passage of hADSCs was used 
for subsequent experiments. The culture medium included 
DMEM/F12 (Gibco, Grand Island, NY), 10% fetal bovine 
serum (Gibco), 1% penicillin/streptomycin (Gibco), and 
0.2 mM L-ascorbic acid-2-phosphate (Sigma, Burlington, 
MA).

Characterization of the hADSCs was performed with 
f low cytometry on the specific surface antigens CD29, 
CD34, CD44, CD105, Flk-1, and HLA-DR (BD Biosciences, 
Franklin Lakes, NJ) according to the manufacturer’s recom-
mendations,. Data were analyzed using the analysis software 
FlowJo V10 (FlowJo, Ashland, OR).

The hADSCs were labeled with CM-Dil according to the 
manufacturer’s recommendations (Thermo Fisher Scientific 
Inc., Waltham, MA). The cells were digested with 0.25% 
trypsin, centrifuged, and washed with a serum-free medium. 
The supernatant was discarded, and 4 μM of CM-DiI was 
added. Then, the cells were incubated at 37 °C for 30 min. 
Subsequently, the cells were washed with phosphate-buffered 
saline (PBS; 1X; 137 mM NaCl, 2.7 mM KCl, 10 mM NaPO4, 
2 mM KPO4, pH 7.4) three times (5 min each time), the 
culture medium was added, and the cells were observed under 
a microscope after adherence.

Induction and identification of hADSCs: The hADSCs were 
seeded in a six-well plate at a density of 1×104 cells/well 
and adhered to the plate for 12 h. Then, the experimental 
group cells were treated with 100 mg/l penicillin, 50 ng/
ml VEGF (R&D Systems, Minneapolis, MN), and 20 ng/
ml basic fibroblast growth factor (bFGF; R&D Systems). 
Control group cells were treated with the same amount of 
PBS. Cells were cultured in a humidified incubator, and half 
of the culture medium was changed in 2 days. After induc-
tion for 14 days, the cells were observed under a microscope. 
Then, as described above, after washing and fixing, 2 µg/ml 
von Willebrand Factor (vWF) monoclonal antibody (Thermo 
Fisher Scientific Inc.) was added, and the cells were incubated 
at room temperature for 60 min. About 50 µl fluorescein 
isothiocyanate (FITC)-labeled goat anti-mouse secondary 
antibody was added. Then, the cells were stained with 
4′,6-diamidino-2-phenylindole (DAPI) and observed using a 
fluorescent microscope.

OIR model: Pregnant C57BL/6J mice were provided by the 
Laboratory Animal Center of Southern Medical Univer-
sity, China. All animal experiments adhered to the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision 

Research and were approved by the local animal welfare 
committee. The OIR model was created as described by 
Smith [18] (the OIR group). Seven-day-old (P7) mice pups 
and their mothers were exposed to 75±2.0% oxygen for 5 days 
(P7 to P12). Then, the P12 mice were transferred to room air 
until P17. Half of the P12 OIR group mice were intravitreally 
injected with CM-Dil-labeled hADSCs (the injected group). 
Mice pups were kept in a normal environment (the control 
group). The nursing mothers were rotated from high oxygen 
to room air every 24 h to prevent oxygen toxicity.

Intravitreal injection: Mice were anesthetized with an intra-
peritoneal (IP) injection of 10% chloral hydrate (2.5 ml/kg). 
The eyelid was separated under a microscope, and the eyes 
were dilated with one drop of 0.5% tropicamide. The eyeball 
was exposed, and after paracentesis of the anterior chamber 
to release part of the aqueous humor, 1 µl of CM-Dil-labeled 
hADSCs (at a concentration of 1×105/ml) was injected into 
the vitreous cavity using a 33-G Hamilton syringe (Hamilton 
Company, Reno, NV). The needle was inserted into the 
vitreous cavity in the direction of the optic nerve about 1 mm 
behind the corneoscleral limbus and was taken out after 30 
s. Erythromycin ointment was applied, and then the eyelids 
were closed. Intravitreal injection in the hADSC injection 
group was performed at P12.

Histological evaluation: After euthanasia, the enucleated 
eyes were fixed with 4% neutral paraformaldehyde for 24 
h, dehydrated by gradient ethanol and transparent xylene, 
and embedded in paraffin wax. The retina was continu-
ously sliced with a thickness of 4 μm parallel to the sagittal 
axis of the optic nerve. The slices were baked overnight, 
deparaffinized with xylene, hydrated with gradient ethanol, 
stained with hematoxylin and eosin, and observed under a 
microscope (Zeiss Axioplan 2 Imaging, Zeiss, Gottingen, 
Germany). One slice was randomly selected from every five 
slices. Histological evaluation of the retinas from the control, 
OIR, and HADSC injection groups was performed at P17.

Retinal flat mount: Mice pups were anesthetized and received 
a retro-orbital injection of fluorescein isothiocyanate dextran, 
described by Li et al. [19]. Then, 10 s later, the mice were 
euthanized using pentobarbital (150 mg/kg, intraperitoneal 
injection). Enucleated eyes were fixed in 4% paraformalde-
hyde for 30 min at room temperature and then washed three 
times in PBS. The retinas were separated from the sclera, 
RPE, lens, and cornea, and cut into four parts. Water-soluble 
mounting tablets were used for mounting, and coverslips 
were added. The retinal flat mounts were photographed at 
5X original magnification with fluorescence microscopy 
(Zeiss Axioplan 2 Imaging). The combined exposure time 
of the retinal flat mounts was 1.5 s. The retinal segments 
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were merged to generate an image of the total retina (Photo-
shop 2020; Adobe Systems Inc., San Jose, CA). Flatmounted 
retinas from the control, OIR, and hADSC injection groups 
were examined at P17. Retinal neovascularization and the 
total retina were measured by outlining the corresponding 
areas and analyzed using Image Pro-Plus 5.0 software (Media 
Cybernetics Company, Silver Spring, MD).

Transmission electron microscopy: After euthanasia, the 
enucleated eyes were fixed with 2.5% glutaraldehyde at 4 °C 
overnight, 1% osmium tetroxide at room temperature, and 
ethanol. After incubation in acetone for 20 min, the eyes 
were treated with 50% (1 h), 75% (3 h), and 100% (overnight) 
epoxy resin and heated at 70 °C overnight. The eyes were 
sliced into sections of about 70 nm. The sections were stained 
with 3% uranyl acetate and 3% lead citrate for 15 min at room 
temperature and observed under an electron microscope. One 
slice was randomly selected from every five slices. Retinal 
ganglion cells (RGCs) and cells of the outer nuclear layer 
from the control, OIR, and HADSC injection groups were 
examined at P17.

Statistical analysis: Data have been reported as the mean ± 
standard deviation of the mean (SDM). Statistical analysis 
was performed using statistical software (SAS Institute Inc., 
Cary, NC). Data were analyzed using independent samples t 
tests to compare the two groups’ differences. A p value of less 
than 0.05 was considered statistically significant.

RESULTS

Culture, characterization, and labeling of hADSCs: In the 
second passage, hADSCs grew well and had spindle and 
polygonal shapes (Figure 1A). The flow cytometry results 
showed that the hADSCs expressed low levels of the hema-
topoietic and endothelial markers CD34 (0.8%) and HLA-DR 
(0.5%), and high levels of CD29 (95.3%), CD44 (99.8%), 
CD105 (99.7%), and Flk-1(99.0%). After CM-Dil labeling, the 
membrane of the hADSCs showed red fluorescence, and the 
nucleus showed no fluorescence (Figure 1B).

Induction of hADSCs: After being inducted into endothelial-
like cells, the corners of the hADSCs had round shapes 
(Figure 1C). Expression of vWF, an endothelial cell marker, 
was absent (no fluorescence) in the control group (Figure 
1E). However, expression of vWF was present (green fluores-
cence) in the experimental group (Figure 1H), and the positive 
rate was 100%. The difference in the positive rate between 
the two groups was statistically significant (p<0.001). The 
nuclei stained with DAPI showed blue fluorescence in the 
two groups.

Intraocular tracking of hADSCs: The histological staining of 
the P17 mice in the control group showed no neovasculariza-
tion breaking through the retina’s inner limiting membrane 
(ILM; Figure 2A). The P17 mice in the OIR group showed 
extensive neovascularization that broke through the ILM 
(Figure 2B). The P17 mice in the hADSC injection group 
showed no apparent neovascularization breaking through the 
ILM, and the injected cells were above the ILM and were not 
fused with the retina (Figure 2C,D).

The retina flat mount of the P17 mice in the control group 
showed that the retina blood vessels were smooth, without 
neovascularization, and had no perfusion area (Figure 2E). 
The P17 mice in the OIR group showed extensive highly 
green fluorescent neovascularization in the periphery area 
and non-perfusion in the central area of the retina (Figure 
2F). The P17 mice in the hADSC injection group showed 
an area of neovascularization and non-perfusion that was 
significantly reduced compared with that in the OIR group. 
Many labeled hADSCs with red fluorescence were noted 
above the neovascularization and non-perfusion area of the 
retina (Figure 2G,H).

Quantification of retinal neovascularization: The retinal 
neovascularization areas of the normal group, OIR group, 
and MSC group were 0, 81,205±9217 μM2, and 4201±623 
μM2, respectively. Compared with the normal group, the 
neovascularization area of the OIR group was significantly 
increased (p<0.0001), and the neovascularization area of 
the MSC group was significantly lower than that of the OIR 
group (p<0.0001; Figure 3).

Proliferation, degeneration, and changes after injection of 
hADSCs: The histological staining results for the hADSC 
injection group at P17 (Figure 2C) showed that the structure 
of each layer of the retina was clear, and the number of retinal 
cells was not significantly different from that in the control 
group at P17 (Figure 2A). There was no noticeable prolifera-
tion in the hADSC injection group at P17. Electron micros-
copy of the control groups showed that the RGCs and the cells 
of the outer nuclear layer had a defined plasma membrane 
and uniformly distributed chromatin (Figure 4A,D). There 
were fewer autophagosomes in the hADSC injection group 
(Figure 4C,F) than in the OIR group (Figure 4B,E) and the 
control group. There was no noticeable difference between 
the normal group and the MSC group.

DISCUSSION

Stem cell therapy brings new hope for the treatment of retinal 
diseases [20,21], but “stem cell therapies” have not been 
approved by the Food and Drug Administration (FDA) and 
are still controversial for clinical application. This study was 
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designed to find theoretical evidence for the induction, prog-
nosis, proliferation, and safety of hADSCs for intraocular 
application. We observed the feasibility of induced hADSCs 
expressing EC-like characteristics. Furthermore, we used 
HE, retinal flat assessment, and electron microscopy to track 
and evaluate the movement trajectory, fusion, proliferation, 
and safety of hADSCs in intraocular application in vivo. The 
study results provide theoretical support for the intraocular 
use of hADSCs.

This study showed the feasibility of hADSCs expressing 
RPEC-like and EC-like characteristics in a specific 

environment. This result suggests the possibility of hADSCs 
maintaining or restoring the function of RPECs or ECs in 
AMD or DR. The disease usually coexists with multiple etiol-
ogies, such as inflammatory factors also accompanying DR. 
We used hADSCs in this study, not induced cells, because we 
wanted to avoid limiting the effects of primitive cells.

Retinal flat mounts were used to examine the distribu-
tion and movement of ADMSCs. The results showed that the 
ADMSCs were distributed above the retina and gathered in 
the central non-perfusion and peripheral neovascular area, 
which is the lesion area in the OIR model. This means that 

Figure 1. Culture, labeling, and immunofluorescence staining of hADSCs. A: In the second passage, the human adipose mesenchymal stem 
cells (hADSCs) show spindle and polygonal shapes. B: The membrane of the hADSCs shows red fluorescence, and the nucleus shows no 
fluorescence. C: After induction, the corners of the hADSCs appear rounded. D, E, F: The expression of von Willebrand Factor (vWF) is 
absent (no fluorescence) in the control group. G, H, I: The expression of vWF is present (green fluorescence) in the experimental group. 
The nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI) shows blue fluorescence in each group. Scale bar = 20 µm, 200X; scale bar 
= 10 µm, 400X.
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ADMSCs may automatically gather in the diseased area. 
These results are consistent with those of Wang et al. [22]. 
Those authors used human umbilical cord mesenchymal stem 
cells (hUCMSCs) and injected them into an elevated intraoc-
ular pressure (IOP) model. They confirmed that 7 days after 
transplantation, a small fraction of cells were seen on the ILM 
of the retina, suggesting that hUCMSCs can migrate to the 
site of retinal injury. Moreover, another study confirmed that 
mouse BMSCs can migrate to the limbal stroma and wound 
healing edge after subconjunctival injections [23]. However, 
Ghazaryan et al. showed no migration of cells after applying 
MSCs to corneal neovascularization [24]. The migration 
results seem to differ from those for different MSCs under 
other pathological conditions. The present results showed the 
automatic migration of hADSCs after intravitreal injection in 
OIR mice, and it is worth understanding the mechanism of 
automated migration in future studies.

The fusion of cells with the host is a fundamental issue 
that directly affects prognosis, side effects, and future use. 
The present results showed that hADSCs were distributed in 
the vitreous cavity and did not fuse with the retina in an envi-
ronment of retinal neovascularization caused by ischemia and 
hypoxia. Similar to this study, around 12 weeks after MSC 
intraocular injection, Ezquerra et al. detected that most donor 
cells remained in the vitreous cavity and did not integrate into 
the retina [25].

However, other studies showed that intravitreally 
injected BMSCs were fused with rat retinas in different 
models [26,27]. We thought that the fusion after intravitreal 
injection might depend on the cell’s molecular weight, the 
ILM [28], glial endfeet [29], and different microenvironments 
[30]. It has been proposed that the therapeutic mechanism 
of MSCs is mainly through the secretion of trophic factors 
[31], and that the exosomes are paracrine effectors of MSCs 

Figure 2. Intraocular tracking of hADSCs. A: The structure of each layer of the retina is clear, and there is no neovascularization breaking 
through the internal limiting membrane (ILM) in the P17 control group. B: Extensive neovascularization broke through the ILM in the P17 
oxygen-induced retinopathy (OIR) group. C: No apparent neovascularization breaking through the ILM and the presence of injected cells 
above the ILM (not fused with the retina) are noted in the human adipose mesenchymal stem cells (hADSCs) injection group. D: Partial 
magnification of Figure 3C (30X). E: The retinal blood vessels are smooth and without neovascularization, and there is no perfusion area in 
the control group. F: There is extensive highly green fluorescent neovascularization in the periphery area and non-perfusion in the central 
area of the retina in the OIR group. G: Neovascularization and non-perfusion are significantly reduced in the hADSC injection group 
compared with that in the OIR group, and labeled hADSCs with red fluorescence are seen above the neovascularization and non-perfusion 
area. H: Partial magnification of Figure 3G (30X).
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[32]. Studies have shown that the fate of intravitreally injected 
MSCs is integrated into the retina, or they remain in the 
vitreous cavity as cell clusters. A study showed no effects 
of intravitreally injected MSCs at 240 days after injection 
[33]. Metabolism after intraocular application requires further 
research. We used HE staining and electron microscopy to 
detect the proliferation, degeneration, and safety of ADMSCs 
in an intravitreal application. This study showed no notice-
able retinal proliferation, deterioration, or apoptosis after 
ADMSC intravitreal application. There have been several 
reports related to the safety of MSC intraocular application. 
Leow et al. confirmed that intravitreally injected human 

Wharton’s jelly-derived mesenchymal stem cells caused no 
side effects when applied in a retinal degeneration model [34]. 
However, in a clinical trial, a report showed three cases of 
vision loss after patients with AMD received bilateral intra-
vitreal injections of autologous adipose tissue–derived stem 
cells [35]. This study did not find cell changes after the intra-
vitreal application of hADSCs, which is Loew inconsistent 
with clinical reports. We speculate that different pathological 
environments and injection amounts of stem cells are the 
main reasons for the different proliferation outcomes.

A study showed that optic nerve cells degenerated under 
pathological conditions at 12 h [36]. In addition, Adi et al. 

Figure 3. Quantification of retinal neovascularization. The neovascularization area of the oxygen-induced retinopathy (OIR) group is 
significantly increased compared to that of the normal group (p<0.0001), and the mesenchymal stem cell (MSC) group is significantly 
decreased compared to that of the OIR group (p<0.0001).

Figure 4. RGCs and cells of the outer nuclear layer are shown with electron microscopy. A, D: The retinal ganglion cell (RGCs) and the 
cells of the outer nuclear layer have a defined plasma membrane and uniformly distributed chromatin in the control group. B, E: There are 
many autophagosomes (black arrow) in the oxygen-induced retinopathy (OIR) group. C, F: There are fewer autophagosomes (black arrow) 
in the human adipose mesenchymal stem cell (hADSC) injection group than in the OIR and control groups. However, there is no noticeable 
difference in cells among the three groups.
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reported that retinal proliferation was not observed in a rat 
model of retinal degeneration for up to 6 weeks [37]. One 
study showed, as studies have shown that less than 1% of 
ADMSCs express HLA-DR, which confirms that the antige-
nicity of human hADSCs is low [38], and that transplantation 
of allogeneic hADSCs does not cause an immune response. In 
addition, Sonia et al. showed no significant difference in eye, 
liver, spleen, or gonadal tissue between an MSC intravitreally 
injected group and a group without injection [39]. We still 
need to pay more attention to the risks in the application of 
MSCs and conclude the “safety” of other aspects, such as 
systemic side effects, daily behavior after transplantation, etc.

One of the limitations of this study is the short observa-
tion time for the safety of human adipose-derived stem cell 
application. The animal model is the main reason. The OIR 
model is a classic model that can simulate pathological retina 
neovascularization, but the model cycle time point is P12, 
and P17, 5 days. Although we used electron microscopy for 
safety, extended observation periods are needed in subse-
quent experiments. Another limitation is that we observed the 
cell expression characteristics only after induction in vitro. It 
will have more significance if we check the cell expression 
characteristics after intravitreal injection in vivo.

In conclusion, we provide preliminary theoretical 
support for the induction, distribution, fusion, proliferation, 
and safety of hADSCs in an intraocular application. However, 
there are still many challenges in the clinical intraocular 
application of MSCs. One challenge is the length and detail of 
the intraocular survival and function of MSCs. Furthermore, 
it is important to determine which MSCs are the best choice 
(MSCs, induced MSCs, or exosomes). Combining stem cells 
and extracellular vesicles and modifying host factors might 
be definitive therapy. More research is needed to clarify these 
questions.

APPENDIX 1. STR ANALYSIS.

To access the data, click or select the words “Appendix 1.”
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