
Fuchs’ endothelial corneal dystrophy (FECD, OMIM: 
136800) is an age-related disorder that affects individuals, 
especially women, older than 40 years of age [1-3]. It typi-
cally follows an autosomal-dominant pattern of inheritance, 
with symptoms that include decreased visual acuity, hazy 
cornea, poor night-vision, and pain during blinking [1,2,4], 
that precipitate into progressive deterioration of the innermost 
layer of the cornea (endothelium) and wart-like excrescences 
(guttae) on its surface. Although the primary cause of this 
disease is unknown, clinical samples exhibit significant 
endothelial cell loss, edematous cornea, and a thickening in 
the endothelial basement Descemet’s membrane [4,5]. These 
manifestations disturb corneal deturgescence, resulting in 
suboptimal endothelial membrane function [6]. FECD is also 
the most frequent reason for corneal transplantations; more 
than 17,000 surgeries were performed in 2016 in the United 
States to correct edematous cornea associated with FECD 
(2016 Eye Banking Statistical Report, Eye Bank Association 
of America).

Two kinds of FECD manifestations are observed based 
on their age of onset: early onset FECD (3 to 40 years) and 
late onset FECD (older than 40 years). Each evinces distinct 
clinical differences [7-9]. In comparison to the 3- to 9-μm 
total thickness of Descemet’s membrane in infants [10], early 
onset FECD cases show the thickest Descemet’s membrane 

of about 35 μm with deeper and discontinuous corneal guttae 
[8]. However, late onset FECD cases have slightly increased 
thickening of Descemet’s membrane (22 µm), but with 
generally shallow and continuous guttae, and an additional 
posterior banded layer in comparison to that of healthy 
elderly adults with 12- to 19-μm-thick Descemet’s membrane 
[8,10,11]. Owing to these manifestations, early onset FECD is 
considered the more severe of the two, and although rare, is 
inherited solely in individuals with a familial predisposition. 
Late onset FECD is, in comparison, less severe and more 
frequent, and inherited sporadically.

This review discusses various risk factors, and their 
pathological contribution associated with the progression 
of FECD. The review also focuses on recent advances in 
surgical and noninvasive techniques developed to restore 
vision deprived due to the disease. Finally, the review draws 
attention to unanswered questions, the answers to which 
would improve the current understanding of FECD.

Prevalence: Owing to the late onset nature and variable 
clinical presentation, diagnosis of FECD at an early stage 
is difficult. This limits the availability of accurate preva-
lence or incidence figures for the disease. A global survey 
conducted across 116 countries reported that most of the 
corneal transplantations (39% of 184,576) performed in 2012 
were to correct FECD alone [12]. Such procedures were most 
frequently observed in countries such as the United States, 
Canada, Denmark, and the United Kingdom. According to 
a statistical report released by the Eye Bank Association of 
America (EBAA) for 2016, FECD accounted for 93% of the 
total corneal transplantations performed to correct endothelial 
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cell failure (2016 Eye Banking Statistical Report, Eye Bank 
Association of America).

Several prevalence studies over the past few decades 
have reported a high incidence of FECD in Caucasians. In one 
of the earliest studies, scientists categorized the severity of 
corneal guttae on a scale of 0–5 (0 being the least severe and 
5 being the most severe), by observing their density through 
a slit-lamp microscope [13]. They reported that about 3.9% 
of Americans older than 40 years of age had Grade 2 (1- to 
2-mm confluent zone of corneal guttae) or more severe cases 
of corneal guttae. Only occasional cases of primary corneal 
guttae progress to exhibiting decompensated endothelium 
and thickened Descemet’s membrane [14], which serve as 
an essential clinical hallmark for a predisposition to FECD. 
When Krachmer and colleagues examined 228 relatives of 
64 FECD probands, they found 37% (49/132) were older than 
40 years of age, and had Grade 2 or worse edematous corneal 
endothelial dystrophy [15]. Both studies equivocally reported 
a strong correlation between increasing severity and age, and 
a higher susceptibility among Caucasian women. In a survey 
conducted on Tangier Island, in the United States, researchers 
reported that 11% of the entire population (535 inhabitants as 
of 2011) had FECD, and all those affected were older than 50 
years of age [16]. Researchers conducting a cohort study in 
Reykjavik, Iceland, also declared similar prevalence rates, 
where more women (11%) than men (7%) had primary corneal 
guttae [17].

Contrasting with Caucasians, in whom the prevalence of 
FECD is starkly higher, Asian populations show fewer cases 
of FECD. The Kumejima study in Japan recorded the lowest 
FECD prevalence: Only 4% (124/3060) of the population 
older than 40 years had Grade 1 or higher primary corneal 
guttae [18]. In a comparative study between two Asian popu-
lations, researchers found that about 6.7% of Chinese Singa-
poreans (n=465) and 3.7% of Japanese (n=299) were older 
than 50 years and had primary corneal guttae [19]. India has 
the second highest rate for per-capita corneal transplantations 
performed globally [12]: About 11–16% of endothelial kera-
toplasty procedures were performed on FECD cases over a 
span of 5 to 6 years [20,21]. From these studies, late onset and 
female dominance for FECD have been established; however, 
the reason is not completely understood.

Genetics of FECD: FECD is a multigenic disorder that 
imparts complex pathophysiology. These diverse genetic 
factors either develop sporadically or have a familial predis-
position. To identify these factors, researchers have resorted 
to two different techniques: genetic linkage analysis and 
genome-wide association studies (GWASs). The former 
examines multigenerational families with at least more than 

one affected member to identify the chromosomal region 
coinherited among affected individuals. GWASs use data 
from a large cohort of non-related individuals with and 
without the disease to identify specific genetic variants asso-
ciated with the disease phenotype.

Thus far, researchers have identified eight different 
genetic loci that cosegregate with FECD, either through 
linkage analysis or a GWAS (Appendix 1). The International 
Committee for Classification of Corneal Dystrophies (IC3D) 
categorized these loci into FECD 1–8 [22]. Genes encoding 
collagen (COL8A2; OMIM: 120252), transcription factors 
(TCF4, OMIM: 602228, ZEB1, OMIM: 189909), sodium 
borate transporter (SLC4A11; OMIM: 610206), and glutamate 
decarboxylase (AGBL1; OMIM: 615496) fall under the loci 
FECD1, 3, 6, 4, and 8, respectively, although researchers have 
yet to identify genes from the remaining loci.

Increasing genetic complexity and cost-effective geno-
typing techniques have resulted in several projects identifying 
new risk factors for FECD. Genes, such as KN motif and 
ankyrin repeat domains 4 (KANK4; OMIM: 614612), ATPase 
Na+/K+ transporting subunit beta (ATP1B1; OMIM: 182330), 
laminin subunit gamma 1 (LAMC1; OMIM: 150290), lipoxy-
genase homology domains 1 (LOXHD1; OMIM: 613072), and 
myotonic dystrophy type 1 protein kinase (DMPK; OMIM: 
605377), were recently identified through a GWAS, linkage 
analysis, or candidate gene studies [23,24,25]. However, these 
genes have not been unclassified by IC3D into individual 
FECD loci. In the following subsections, each genetic factor 
is discussed in short summaries.

COL8A2—Multigenerational familial studies discov-
ered the first FECD locus at the chromosomal position 
1p34.3–p32.3 (FECD1), where researchers identified patho-
genic mutations in the collagen gene COL8A2 (Appendix 1) 
[26-33]. Mutations positioned in the triple helical domain of 
α2, p.Leu450Trp and p.Gln455Lys, alter the structure and 
composition of Descemet’s membrane, leading to the early 
onset type of FECD [28,29,31]; the latter mutation is present 
in almost all the early onset cases in English and Korean 
populations [28,31]. Endothelial guttae, aberrant collag-
enous deposition, and swollen endoplasmic reticulum (ER) 
were characteristic of a homozygous mutant (p.Gln455Lys/ 
p.Gln455Lys) mouse model for early onset FECD [34]. Other 
mutations identified in different studies were either polymor-
phic or non-pathogenic [27,29,30]. These studies provided 
a crucial insight into the phenotypic repercussions on the 
corneal endothelium of accumulated mutations in COL8A2, 
and can help devise better preventive measures to curb disease 
progression. Despite various attempts, researchers have failed 
to identify any mutations and polymorphisms in the COL8A2 
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gene among late onset FECD cases, suggesting its genetic 
involvement is exclusive to early onset cases [27,35].

TCF4—TCF4, encodes E2–2 protein, a group of E 
protein transcription factors known for cellular growth and 
differentiation, and is the only gene studied extensively 
in FECD cases from various ethnic backgrounds. After 
performing a GWAS, Baratz and colleagues first identified a 
strong association between the polymorphic marker rs613872 
within an intron of the TCF4 gene and FECD [36]. This asso-
ciation was later confirmed by several replication studies in 
American [16,37] and Australian [38,39] ethnic populations, 
but was not polymorphic among Chinese, where two other 
polymorphisms, rs17089887 and rs17089925, in close linkage 
disequilibrium (LD) with each other, were found to be associ-
ated with FECD [40]. Subsequent studies reported a microsat-
ellite region comprising CTG trinucleotide repeats (TNRs) in 
the fourth intron of the TCF4 gene to be abnormally expanded 
and segregated among most patients with FECD. This genetic 
signature for FECD is most prominent in Caucasians, with 
80% penetrance [41,42], followed by Germans (77% [43]), 
Australians (51% [44]), and Asians (Chinese, 43% [45], and 
Indians, 34% [46]).

SLC4A11—FECD shares several phenotypic similarities 
with other endothelial (posterior) corneal dystrophies, such as 
congenital hereditary endothelial dystrophy (CHED, OMIM: 
121700) and posterior polymorphous corneal dystrophy 
(PPCD, OMIM: 122000) [47,48]. Therefore, it is convenient 
to hypothesize that clinical manifestations of these corneal 
dystrophies may share modifications of similar genes [49,50].

SLC4A11 is the only member of the solute carrier 4 
(SLC4) borate transporter family of proteins that conducts 
Na+-coupled H+ flux and OH- transport [51]. Scientists have 
also reported the active participation of SLC4A11 in water 
resorption through the basolateral surface of the endothelium 
to maintain deturgescence [52]. Mutations in this protein 
result in either a swollen cornea, in the case of corneal 
dystrophies, such as CHED (OMIM: 217700) [53] and FECD4 
(OMIM: 613268) [50,54], or f luid imbalance in the inner 
ear, in the case of the hearing disorder Harboyan syndrome 
(OMIM: 217400) [49]. Therefore, it is not surprising to find 
hearing disabilities in patients with corneal dystrophies 
[49,55]. In an Indo-Chinese FECD cohort, four likely loss-of-
function mutations in SLC4A11 (p.Glu399Lys, p.Gly709Glu, 
p.Thr754Met, and c.99–100delTC) were uncovered by 
Vithana et al. [56].

A comparative assay between FECD and CHED-causing 
SLC4A11 mutants in transformed human embryonic kidney 
(HEK) cells revealed that FECD mutants (p.Glu399Lys, 
p.Gly709Glu, and p.Thr754Met) in heterozygous condition 

drastically reduced the cell surface population of wild-type 
SLC4A11 proteins. In contrast, the cell surface efficiency 
of wild-type (WT) SLC4A11 proteins is unaffected by 
the coexpressing CHED2-causing mutants (p.Glu143Lys, 
p.Cys386Arg, and p.Arg755Trp) [57]. ER retention of WT/
FECD heterodimers explains the dominant nature of FECD. 
Given the differences, the two diseases also share a similar 
phenotype when these mutants are expressed homozygously, 
and the mutant homodimers are intracellularly retained, 
leading to a severely dysfunctional corneal endothelial 
pump function. Further studies to strategize methods that 
can rescue these phenotypes (to an extent) by supplementing 
wild-type SLC4A11 peptides may help these patients avoid 
corneal transplantation.

ZEB1—Similar to SLC4A11, mutations in the transcrip-
tion factor Zinc finger E- Box binding homeodomain 1 (ZEB1) 
have been associated by researchers with FECD6 (OMIM: 
613270) and posterior polymorphous corneal dystrophy 
(PPCD3, OMIM: 609141). Nonsense or truncating muta-
tions identified in this gene are a significant contributor for 
PPCD, which is more severe than FECD [58-61]. As FECD 
has phenotypic similarities to PPCD, scientists also found 
missense mutations in FECD case-control studies, some 
of which were intolerant according to Sorting Intolerant 
From Tolerant (SIFT) and PolyPhen analysis (Appendix 
1). Of these mutations, p.Gln840Pro cosegregated with 
the FECD7 (OMIM: 613271) locus on chromosome 9 in a 
multigenerational family, and increased disease severity in 
7/12 individuals [58]. These studies suggested that PPCD and 
FECD could be allelic variants of a continuum of diseases 
in which genes interact to modulate the expressivity of the 
phenotype [58].

AGBL1—ATP/GTP binding protein-like 1 (AGBL1) is a 
deglutamylase enzyme, which removes polyglutamate resi-
dues during post-transcriptional modification of proteins. 
AGBL1 was identified as a candidate gene during serial 
analysis of gene expression (SAGE) analysis of FECD tissues 
where the gene’s transcript levels differed significantly from 
those of the control specimens [62]. To find a unique genetic 
candidate for FECD, scientists performed linkage analysis in 
a multigenerational family, and found a nonsense mutation 
(p.Arg1028X) in the AGBL1 gene that partially cosegregated 
with FECD. Upon scanning the entire gene, the authors 
also found a missense mutation, p.Cys990Ser, unique to the 
FECD cohort. Both mutations ablated the interaction between 
AGBL1 and TCF4 proteins [63], the exact nature of which is 
open for investigation. This study led to identifying the asso-
ciated genetic loci as FECD8 (OMIM: 615523). AGBL1 also 
surfaced in the latest GWAS study with a modest association 
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[23]. Due to lack of replication studies in other cohorts that 
can substantiate the presence of these mutations in FECD-
affected individuals, the true contribution of the AGBL1 gene 
in causing this disease is open for further investigation.

KANK4, LAMC1, and ATP1B1—In addition to TCF4, 
a subsequent GWAS conducted by Afshari et al. (with 1,404 
European FECD cases and 2,564 age- and race-matched 
controls) identified three novel loci, rs79742895 (KANK4), 
rs3768617 (LAMC1), and rs1200114 (ATP1B1) linked with 
FECD [23]. These corresponding genes aid in maintaining 
corneal deturgescence by regulating routine fluid transport, 
intercellular contact, and tissue integrity. Improper func-
tioning of these activities could lead to FECD-like symp-
toms. Therefore, replication studies in other populations 
and investigations to explore the genes’ role in the disease 
pathomechanism are warranted (Appendix 1).

LOXHD1—The protein encoded by lipoxygenase 
homology domains 1 (LOXHD1) is involved in sensory 
perception of sound, and targeting other proteins to the 
plasma membrane. Therefore, missense mutations affecting 
the conserved domains lead to a progressive form of audi-
tory defect: autosomal recessive deafness (DFNB77, OMIM: 
613079) [64,65]. When scientists investigated the FECD3 
locus (previously designated as FECD2) in a multigenera-
tional pedigree, they found a missense mutation in LOXHD1 
to be the sole causative factor for the disease phenotype 
[24]. They further found 15 more unique missense muta-
tions in a larger cohort of 207 unrelated patients with FECD, 
which were absent in 384 control chromosomes. Three of 
these mutant proteins (p.Arg157Cys, p.Arg547Cys, and 
p.Arg751Trp) formed intracellular aggregates in in vitro 
transformed cells. As the study could not provide one allele 
in the LOXHD1 gene that cosegregated in the FECD pedigree, 
replication studies are necessary to associate the variants in 
this gene with the disease. Therefore, IC3D has not included 
LOXHD1 as an official genetic candidate in the FECD3 locus.

DMPK—Expanded repeats in the 3′-untranslated 
region (UTR) of the dystrophia myotonica-protein kinase 
(DMPK) gene cause the neurodegenerative disorder myotonic 
dystrophy type 1 (DM1). Other disorders that are the result of 
repeat expansions in non-coding regions of associated genes 
include myotonic dystrophy (DM1 and DM2), fragile X-asso-
ciated tremor/ataxia syndrome (FXTAS), and C9ORF72 
(OMIM: 614260) associated amyotrophic lateral sclerosis and 
frontotemporal dementia (C9ORF72 ALS/FTD). Owing to 
FECD’s association with the expanded repeats in TCF4, the 
disorder is now categorized as a trinucleotide-repeat expan-
sion disorder. In a comorbidity study-type setting, researchers 
investigated 13 patients with DM1, and reported that 46% 

also had FECD. This finding indicates that apart from TCF4, 
individuals with FECD could also harbor expansions else-
where in genome, in this case, the DMPK gene, thus making 
it a novel genetic candidate for FECD [25,66]. With further 
studies, other repercussions of these expansions in non-ocular 
tissues can be assessed.

Non-heritable risk factors: FECD is a complex disorder that 
is hypothesized to progress due to the combined effect of 
genetic and environmental risk factors. Recognizing these 
factors will profoundly benefit patients and clinicians to avert 
or dampen disease progression. Apart from genetic players, 
the most consistent risk factors are age and gender, where 
individuals older than 40 years and women are most suscep-
tible to this disease [67]. A recent GWAS provided the first 
evidence of gender-specific genetic risk factors, where the 
associated genes TCF4 and LAMC1 imparted higher FECD 
risk in men and women, respectively [23]. However, it is 
unclear why this discrepancy exists.

Smoking is another factor that researchers have consis-
tently associated with increasing FECD severity. In the 
Reykjavik eye study, scientists found that Icelanders who 
smoked 20 or more cigarette packs per year doubled their 
risk of having corneal guttae older than 50 years of age 
[17]. In another study, scientists reaffirmed this association 
in Americans, and reported that smoking increased their 
chances of having FECD by 30% [67]. Other factors assayed 
in these studies included exposure to ultraviolet (UV) light, 
diabetes, bodyweight, and body-mass index (BMI). Reports 
indicated that although previous exposure to UV light for 
more than 4 h daily (when younger than 50 years) can lead 
to lens opacification [68], the exposure does not increase 
the chances of developing corneal guttae [17]. These reports 
rejected the speculations drawn from the prevalence data 
that tropical countries are prone to higher FECD prevalence 
due to intensive UV exposure. Researchers also showed an 
independent association of diabetes with increased central 
corneal thickness, but the association did not affect FECD 
severity [67]. However, higher bodyweight and BMI acted 
as protective factors that reduced the chances of developing 
corneal guttae [17].

Interpreting the molecular mechanism: Each of these 
risk factors, both genetic and environmental, individu-
ally contribute to disease progression, thus making the 
pathomechanism of FECD complex. In the following sections, 
the known molecular pathways affected during FECD are 
discussed.

Channelopathy and pump dysfunction—The primary 
function of the cornea is to maintain deturgescence, which is 
corneal hydration, thickness, and transparency. The corneal 
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endothelium plays a significant role in carrying out this func-
tion; therefore, deterioration of the corneal endothelium can 
cause the characteristic corneal edema seen in FECD.

Aqueous humor present in the anterior chamber (the 
space between the cornea and the lens) bathes the cornea 
with solutes and nutrients, which leaks through the selec-
tive barrier of endothelial cells into the avascular cornea 
[69]. Corneal stroma tends to absorb water, which flows 
through the endothelium driven by the intraocular pressure. 
Acting like a hydrogel, the endothelium must strike a balance 
between water imbibing and pumping out, to avoid stromal 
swelling. Swelling pressure isotherm maintains this equilib-
rium [70]. When this isotherm is disturbed, the stroma gorges 
an unquantified amount of aqueous humor that increases the 
inter-collagen-fibrillar distance, and causes corneal opacifica-
tion. A healthy stroma counteracts this uncontrolled swelling 
by implementing the pump leak system of the endothelium 
[71]. The presence of active Na-K ATPase pumps on the 
endothelial surface drains the excess aqueous humor when 
it senses increased stromal pressure, by lowering osmolarity 
at the basolateral endothelium [71,72]. A dysfunctional pump 
and barrier system can disturb the corneal deturgescence, 
and cause edema. FECD is a case of channelopathy where 
disease-causing mutations accumulate secondary outcomes 
where ion channels, such as solute carrier family 4 member 
11 (SLC4A11), Na+, K+ transporting ATPase (Na+/K+ ATPase), 
aquaporin 1 (AQP-1), and monocarboxylate transporters 
(MCTs), either are dysfunctional or are less populated on the 
cell membrane.

SLC4A11 is a densely populated corneal endothelium 
(CE) membrane borate pump [52]. Its malfunction has been 
associated with numerous endothelial dysfunctions, such 
as CHED [53], FECD [50,57], and sensorineural hearing 
disorder [73]. The majority of the FECD-associated mutations 
(p.Glu399Lys, p.Gly709Lys, and p.Thr754Met) in this gene are 
housed in structurally conserved residues [74], which result 
in loss of function due to ER retention of these misfolded 
proteins [75]. Other mutations (Gly709Glu) cause membrane 
expression of partially functional SLC4A11 [57]. Methyla-
tion studies also indicated decreased membrane expression of 
SLC4A11, due to hypermethylation of its promoter in FECD 
tissues [76]. It ultimately results in failed transport of Na+ 
coupled OH- transport [51], and NH3:2H+ cotransport [77]. 
Recent studies have reported that ammonia transported by 
SLC4A11 is essential for ATP generation via glutaminolysis 
using the Na+/K+ ATPase system [78], which, in turn, acts 
as an accessory energy source for the corneal endothelium. 
Therefore, stripping off the functional units of this membrane 
protein puts the endothelium under tremendous pressure that 

initiates a cascade of downstream pathological effects leading 
to its apoptosis [79].

Na+/K+ ATPase is a holoenzyme with two components: 
subunits α1 and β1, present in the basolateral region of the 
corneal endothelium. Abundant transcripts of the β1 subunit 
are necessary to assemble functional enzyme molecules in 
the ER [80,81]. The β1 encoding gene, ATP1B1, is genetically 
associated with FECD [23]. A significant drop in its transcript 
level showed a steady decline in the Na+/K+ ATPase density 
in late onset FECD endothelial cells [82,83]. In neuronal 
cell lines, researchers induced nuclear respiratory factor 1 
(NRF-1) by administering potassium chloride to success-
fully restore the expression of Na+/K+ ATPase subunits [84]. 
Topical application of steroids, such as dexamethasone, on 
corneal endothelial cells also increased the expression and 
activity of Na+/K+ ATPase [85]. These molecules can be used 
as potential pharmacological interventions to improve the 
condition of energy-deprived endothelial cells of patients 
with FECD.

Other endothelial pump systems significantly downregu-
lated in FECD tissues are aquaporin AQP-1 [86,87] and the 
monocarboxylate transporters MCT1 and MCT4 [83]. When 
epigenetic signatures were studied, researchers found that 
most of the water transport and fluid transport genes were 
hypomethylated in their gene bodies in FECD tissues [76]. 
These reports cumulatively indicated that the FECD condi-
tion severely curbs the basic functioning of the endothelium 
by reducing the expression of channel proteins.

Epithelial to mesenchymal transition—Corneal endo-
thelial lining and stroma secrete a patterned layer of extra-
cellular matrix (ECM), called Descemet’s membrane. In a 
healthy infant cornea, banded fibrils on the anterior zone of 
Descemet’s membrane are the thickest, and apparently, then 
maintain the thickness [10]. In the case of an endotheliopathic 
cornea like that in FECD, scientists have reported excessive 
collagenous and fibrillar deposition [11], which reflects 
as wart-like excrescences under the slit-lamp microscope 
[8]. Extensive studies on the structure and composition of 
Descemet’s membrane in FECD have reported significant 
upregulation of several ECM components, such as collagen 
subtypes I, III, and XVI; fibronectin; and agrin [88,89]. 
The initial pathogenic indication of FECD involves thick 
deposition of fibronectin, followed by deregulated expres-
sion of laminin and type IV collagen in the posterior face of 
Descemet’s membrane in advanced stages [88].

Although the reason for excessive ECM deposition on 
Descemet’s membrane is obscure, researchers believe that 
epithelial-mesenchymal transition (EMT) inducer genes might 
be responsible. During advanced stages of degeneration, the 
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corneal endothelium undergoes fibroblastic changes, such 
as abnormal deposition of fibrotic ECM, without changing 
its endothelial phenotype [90]. Investigations on immortal-
ized FECD lines suggested that increased ZEB1 and Snail1 
proteins lead to excessive ECM production through the trans-
forming growth factor beta (TGF-β) pathway. Both proteins 
mediate EMT in various tissues [91]. After supplementing 
the immortalized FECD (iFECD) cells with inhibitors for 
TGF-β type I, researchers could suppress ECM overexpres-
sion [92]. There are also reports about the overexpression of 
TGF-β induced protein (TGF-βIp) and clusterin (CLU) in the 
corneal endothelium [38,89,93]. These initial insights into 
progressive alterations in the ECM deposits by the FECD-
affected endotheliopathic cornea have broadened our current 
understanding of the pathology to develop therapeutic targets 
against it.

RNA toxicity and RAN translation—The association 
of TCF4 expansion repeats with FECD has provoked three 
burning questions among researchers: 1) What is the under-
lying pathological mechanism? 2) What is the copy number 
of repeats that cause toxicity? 3) Does the TNR affect TCF4 
expression? The pathological outcomes of repeat-expansion 
diseases can be explained by two distinct mechanisms: the 
toxicity of RNA repeats and the toxicity of repeat-associated 
non-ATG (RAN) translation, or a combination of the two. 
Whether these pathological pathways are coregulated in 
FECD is still an open-ended question.

The post-transcriptionally processed repeat expansions 
sequester splice-machinery proteins, such as MBNL1 and 
MBNL2, which physically appear as RNA foci in FECD 
cells [25,94,95]. This sequestration alters the concentration 
of correctly spliced transcripts of their target genes. FECD 
shares these pathological events with myotonic dystrophy 
type 1 (DM1) where expanded CTG trinucleotide repeats 
(present in the 3′-UTR of the DMPK gene) sequester MBNL1 
into RNA foci, and cause abnormal RNA processing [96,97]. 
RNaseq transcriptome analysis performed with FECD and 
control tissue samples identified 18/24 overlapping transcrip-
tional events with DM1 splicing changes [94]. Further, the 
reports of the DMPK expansions observed in FECD cases 
[25,66] have confirmed FECD as a TNR-mediated RNA 
pathology disorder. Future studies are essential to investigate 
the impact of the repeat expansions in the DMPK and TCF4 
genes on the severity of FECD.

Researchers have performed multiple tests to identify 
the disease-causing threshold of TNRs in FECD. In the first 
few studies, an arbitrary limit of 50 TNRs was considered 
disease-causing. Using fluorescence in situ hybridization 
(FISH) and multiple cell lines with varying copy number 

genotypes, researchers have ascertained that >32 TNRs is 
sufficient to form RNA foci in nuclei [98,99]. However, vali-
dating these pathological thresholds in FECD tissues in the 
future will help provide more insights. Owing to the TNRs’ 
nature as a master regulator of genes, researchers have also 
explored the possibility of non-coding TNR expansion to 
modulate TCF4 expression. They speculated that these non-
coding expanded repeats would result in insufficient TCF4 
to regulate the expression of essential genes and transcrip-
tion factors, and cascade down to cause FECD [36,100,101]. 
However, given the complex transcript variants of TCF4, it is 
difficult to ascertain the same.

Alternatively, these expanded repetitive stretches of 
nucleotides elicit RAN translation, in which it allows the 
ribosomes to translate the expanded repeats in multiple 
reading frames to produce multiple homopolymeric or 
dipeptide repeat-containing proteins. The RAN peptides thus 
produced can disrupt cellular functions by forming nuclear 
and cytoplasmic inclusions that contribute to disease patho-
genesis through various mechanisms, including proteasome 
impairment, endoplasmic reticulum stress, nucleolar stress, 
nucleocytoplasmic transport defects, alterations of the nuclear 
lamina, mis-splicing, mitochondrial dysfunction, and oxida-
tive stress [102-105]. Recent evidence of RAN translation 
products in FECD-affected corneal tissues having expanded 
CTG repeats [106] has put FECD in the types of other repeat 
expansion disorders, such as spinocerebellar ataxia types 
8 (SCA8), SCA31, familial forms of amyotrophic lateral 
sclerosis, frontotemporal dementia, fragile X tremor/ataxia 
syndrome (FXTAS), Huntington disease (HD), and myotonic 
dystrophy type 2 (DM2). The toxicity induced by the RNA 
and protein gain of function mechanism has resulted in these 
serious neurodegenerative disorders, whereas apart from 
atrophied corneal endothelial cells, neurodegeneration in 
FECD has not been reported.

Mitochondrial pathology—Corneal endothelial cells 
are metabolically demanding due to the constant f lux of 
ions and fluids; thus, these cells are the most populated with 
mitochondria in comparison to all other ocular tissues. FECD 
is a result of heightened oxidative stress in decompensated 
corneal endothelial cells with an inefficient mitochondrial 
system [107]. Features pathognomonic of compromised 
mitochondria in iFECD lines and ex vivo specimens include 
increased mitochondrial DNA damage, decreased mitochon-
drial membrane potential, and mitochondrial fragmentation 
[108,109].

Electron microscopy of the FECD endothelium showed 
that the remaining mitochondria in the surviving cells were 
overtaxed, to produce cytochrome oxidase activity products 
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[110]. These mitochondria fail to recover entirely from an 
external oxidative insult (such as exposure to hydrogen 
peroxide or menadione) compared to their healthy coun-
terparts [108]. These overburdened mitochondria succumb 
to mitophagy (mitochondrial fragmentation), owing to 
decreased Mitofusin-2 (Mfn2) expression, which is neces-
sary to maintain a healthy mitochondrial turnover [109]. The 
mitochondrial transcripts, essential to curb the increased 
reactive oxygen species (ROS), are also depleted systemati-
cally in FECD [62], which could be a consequence of their 
hyper-methylated promoters [76].

To salvage the surviving endothelial cells, it is neces-
sary to stop the rapid decline of the mitochondrial mass in 
these cells. Therefore, researchers are targeting to stabilize 
cardiolipin (a phospholipid present in the inner mitochondrial 
wall) to restore ATP production. Elamipretide is a synthetic 
mitochondria-targeted tetrapeptide (SS-31) that ameliorates 
mitochondrial dysfunction by preventing peroxidation of 
cardiolipin [111]. Stealth Biotherapeutics is in Phase II trials 
to test the efficacy of this drug on patients with FECD (Clini-
calTrials.gov Identifier: NCT02653391).

Oxidative stress response and apoptosis—Due to the 
localization and function of the cornea, it is regularly exposed 
to sunlight and atmospheric oxygen, mainly dioxygen, which 
produce ROS. Oxidative stress response in FECD is a conse-
quence arising from the accumulation of mutations, chan-
nelopathy, ER stress, and RNA toxicity. When cells fail to 
clear the excessive ROS adequately, an imbalance is created 
in the oxidant–antioxidant level that elevates oxidative stress. 
Primary cellular scrubbers (antioxidants) that clean oxida-
tive waste products are superoxide dismutases (cytosolic 
and mitochondrial), catalase, glutathione peroxidase, and 
glutathione reductase. Their transcript levels are severely low 
in FECD cases [62]. The transcription factor NRF2 plays a 
significant role in the expression of these antioxidants during 
an oxidative insult. When in the cytosol, NRF2 is in the inac-
tive state as the NRF2-KEAP1 complex. Upon oxidation, 
active NRF2 dissociates and translocates to the nucleus with a 
transcriptional coactivator and stabilizer molecule, DJ-1 (also 
known as PARK7; Parkinsonism associated deglycase) [112]. 
In FECD cells, DJ-1 levels are severely decreased, which, 
consequently, fail to activate the antioxidant genes [113]. In 
addition, depletion of SLC4A11 from the cell surface affects 
cell viability and NRF2 functionality [114]. Targeting these 
genes to thwart corneal degeneration will be therapeutically 
beneficial [115,116].

Unfolded protein response (UPR) also elevates oxidative 
stress in FECD specimens, which is evident from the rough 
and enlarged endoplasmic reticulum of the endothelial cells 

[117]. Deregulated transcript levels of UPR markers, such as 
GRP78 (OMIM: 138120), phospho-eIF2α (OMIM: 609234), 
CHOP (OMIM: 126337), EDEM3 (OMIM: 610214), SCAP 
(OMIM: 601510), SEL1L (OMIM: 602329), HSPA5 (OMIM: 
138120), and PFDN5 (OMIM: 604899), in the affected tissues 
further validate this finding [83,117]. Activation of UPR can 
be due to several reasons: accumulation of misfolded mutant 
proteins, inefficient anterograde/retrograde transportation, 
and oxidative imbalance. These processes are the result of 
genetic or environmental predisposition. Although it is not 
essential for them to co-occur, individually or in combination, 
they can cause oxidative stress and apoptosis of the endothe-
lial cells, a feature quite evident in every FECD specimen 
examined thus far.

In previous sections, how various mutations in the 
conserved regions of SLC4A11 (failed surface-localization), 
LOXHD1 (cytoplasmic aggregates formation), and COL8A2 
(recreation of early onset FECD phenotype in the knock-in 
mouse model) lead to FECD phenotype through ER retention 
was discussed [24,34,56]. Although these mutations share 
only a limited genetic load to cause FECD, repercussions 
of UPR are evident in every FECD affected tissue sample. 
Okumura and colleagues addressed this by reporting an 
enhanced expression of TGF-β isoforms (TGF-β1 OMIM: 
190180 and TGF-β2 OMIM: 190220) and their receptors 
(TGF-βR1 OMIM: 190181 and TGF-βR2 OMIM: 190182), 
which chronically overload the ER with ECM proteins 
(fibronectin and collagen type 1), and consequently, elicit 
UPR and apoptotic pathways [118]. Targeting these receptors 
with therapeutic inhibitors to block the TGF-β pathway has 
suppressed aggresome accumulation and apoptosis in iFECD 
lines [118].

Oxidative stress in these decompensated endothelial cells 
tends to accumulate irreparable DNA damage, such as oxida-
tive DNA lesions (8-hydroxy-2′-deoxyguanosine) [107]. Such 
damage stops the proliferative capacity of these cells, and 
leads to premature senescence and p53-mediated apoptosis 
[119]. Reports suggested that cells overexpress clusterin in 
response to cytotoxic stress in early and late onset FECD 
[120]. Researchers also speculated that the accumulation 
of extracellular clusterin and TGF-βIp in cells are likely to 
scavenge the aberrant ECM to promote intercellular cell-
substratum adhesive interactions, and maintain integrity in 
the disease-stricken decaying tissue [93,121,122].

To summarize, various genetic and environmental 
stressors accumulate spontaneous mutations over a period. 
Depending on the site of mutagenesis, they can lead to cell 
toxicity (aberrant protein folding), nuclear toxicity (RNA 
foci formation), or deregulation of essential genes involved 
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in maintaining crucial corneal endothelial functions, such 
as hydration, f luid f lux, mitochondria-mediated ATP 
generation, DNA repair, and antioxidant production. One or 
several of these events can co-occur, to bring out the patho-
physiological etiology of FECD (Figure 1). Understanding the 
pathomechanism can allow investigators to design symptom-
specific therapeutics that can avert or delay the progression 
of FECD.

Contemporary treatment procedures for FECD: Patients 
with FECD often complain of blurred vision, light scattering, 
watery eyes, and corneal haze. As these symptoms worsen 
in the sixth to seventh decade of life, corneal transplanta-
tion becomes inevitable. Previously, surgeons performed 
penetrating keratoplasty (PK) to replace the entire thickness 
cornea. However, this gold-standard technique has limita-
tions: long visual recovery, persistent epithelial defect, suture 
trauma, and recurrent refractive surgery to correct postopera-
tive ametropia. For the past two decades, ophthalmologists 
around the world have practiced modifications of endo-
thelial keratoplasty (EK), where only the endothelial layer 
is replaced, or descemetorhexis, in which only Descemet’s 
membrane is stripped off.

Current surgical techniques—Surgical modifications 
of endothelial keratoplasty include posterior lamellar kerato-
plasty (PLK), deep lamellar endothelial keratoplasty (DLEK), 
(femtosecond) Descemet stripping (automated) endothelial 
keratoplasty (DSEK/DSAEK/FS-DSEK), and Descemet 
membrane endothelial keratoplasty (DMEK). DSAEK has 
been the treatment choice in the past decade for patients with 
endothelial failure. This technique has decreased the rejec-
tion rate, intraoperative and postoperative complications, 
and astigmatism, and produced faster visual recovery with 
more consistent results, compared with PK [123-125]. In 
DMEK, Descemet’s membrane, along with the endothelium, 
is replaced [126]. This technique has improved outcomes 
over DSAEK in rejection rates and visual recovery, but is 
not recommended in all cases of endothelial dysfunction. In 
addition to these techniques, Descemetorhexis without EK 
has recently been employed to treat FECD [127-129].

Non-surgical interventions—Although surgeons have 
improved on the postoperative challenges, surgical proce-
dures are always physically and mentally arduous, with the 
patient having to bear the shortcomings in their twilight years. 
Koizumi and colleagues effaced these surgical pitfalls when 
they introduced a revolutionary eye drop formula containing 
a Rho-kinase (ROCK) inhibitor (Y-27632) that completely 
regenerated the apoptotic and terminally differentiated 
corneal endothelial cells in monkeys to restore vision [130].

Okumura and colleagues scrapped off the corneal 
endothelial layer to demonstrate a corneal endothelial 
dystrophy animal model, and injected cultured monkey 
corneal endothelial cells (MCEnCs), suspended in culture 
media supplemented with Y-27632 (ROCK inhibitor), into 
the anterior chamber. After allowing the cells to settle for 
3 h in the face-down anaesthetized monkey, they observed 
a reattached endothelium through the slit-lamp microscope. 
When monitored for a year, these healthy endothelial cells 
restored vision and maintained transparency, without any side 
effects of the drug in the monkeys. The researchers found 
similar results for implanting human corneal endothelial cells 
(HCEnCs) in these primates [131].

After obtaining necessary approval from institutional 
committees to use Y-27632 in eye drops for treating corneal 
endothelial dystrophies in humans, the researchers adminis-
tered this eye drop (6 times daily for 7 days) to a 52-year-old 
male Japanese patient with advanced FECD [130]. At follow-
up after 6 months, the patient showed pronounced improved 
vision. Although there were no side effects for 2 years, the 
endothelial cells did not repopulate on the guttae. Random-
ized clinical trials are necessary before this drug can be used. 
Even with these reservations, applications of ROCK inhibitor 
as a potential noninvasive therapy for FECD is promising. 
ROCK inhibitor (Y-27632) eye drops uplift the mitotic block 
to regenerate the patient’s endothelial cells in situ. A recent 
review summarized the potent therapies for FECD [132].

However, if the regenerated endothelial cells develop 
pathogenic nuclear foci due to expanded TNRs, an unhealthy 
layer of endothelium will repopulate, which might degen-
erate over time. Hu and colleagues addressed this issue by 
administering antisense oligonucleotides against expanded 
CUG repeats (within TCF4 pre-mRNA) to block RNA foci in 
patient-derived cells [133]. Post-treatment, these cells signifi-
cantly reduced the number of RNA foci, and partially restored 
the alternative splicing events of MBNL1, IN2, and ADD3 
genes; however, it remains to be seen whether RNA foci 
by itself are pathogenic, or bring about their effect through 
RAN peptides. Both methods, ROCK inhibitor eye drops and 
antisense oligonucleotides, are promising, noninvasive thera-
peutic techniques, and it remains to be seen whether if used 
in combination, they can overcome each other’s limitations.

Unanswered questions: Most of the literature discussed in this 
review comprised genetic information biased to Caucasians 
with American and European descent. Whereas extensive 
reports have suggested ethnic diversities impart significant 
impact across the globe [134-139]. Several replication studies 
have observed differences in allele distribution for polymor-
phic disease markers in different populations [40,46,140]. 
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Figure 1. Pathomechanisms in FECD. Alterations in DNA, such as mutations or polymorphic variations, cause several deregulatory events. 
Post-transcriptional byproducts of expanded repeats in the TCF4 and DMPK genes sequester splice-machinery proteins (MBNL-1) that 
elevate RNA toxicity and mis-spliced transcript levels. Channel and pump proteins, such as SLC4A11, MCTs, NA+/K+ ATPases, and aqua-
porins, are sub-optimally functional, or show reduced surface density, which affect the basic endothelial pump–barrier function. Increased 
endoplasmic reticulum (ER) stress elicits unfolded protein response and oxidative stress, which cause mitochondrial fragmentation and 
DNA lesions. Cells produce excessive and abnormal extracellular matrix materials that thicken Descemet’s membrane and form guttae. 
Progressive escalation of these processes causes apoptosis, and depletes most of the endothelial population.
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This lack of ethnically rich information regarding diseases 
should encourage researchers to carry out population-specific 
genetic evaluations in their respective populations.

Based on recent reports, introns [141] and DNA meth-
ylation hotspots at TNR stretches [142] confer regulatory 
roles. Therefore, it would be interesting to elaborately assess 
the functional roles of genetically associated intronic poly-
morphisms in FECD pathogenesis. Owing to the significant 
penetrance of TNRs among various populations across 
the globe [142,143], understanding the functional implica-
tions of these accumulated repeats in non-ocular tissues to 
demonstrate secondary complications becomes essential. 
The current plethora of information obtained for FECD 
pathogenesis has undoubtedly broadened the understanding 
of several genetic and physiologic players. However, many 
significant unanswered questions related to the pathology of 
expanded trinucleotide repeats, the effect of collagen deposi-
tion on corneal functioning, and the contribution of various 
genetic factors (such as KANK4, ATP1B1, LAMC1, and ZEB1) 
in FECD disease progression, remain, which are currently 
under investigation in various laboratories across the globe.

Concluding remarks: Fuchs’ endothelial corneal dystrophy is 
an autosomal dominant disorder with heterogeneous genetic 
and uninheritable risk factors. Over the past two decades, 
extensive studies have been performed to understand its 
complex pathogenesis. Now, with continuous progress in 
surgical advancement and noninvasive therapies, treating this 
disorder has come close to becoming a reality.

APPENDIX 1. COMPREHENSIVE LIST OF 
CHROMOSOMAL LOCI AND THE GENETIC 
VARIATIONS ASSOCIATED WITH FECD.

To access the data, click or select the words “Appendix 1.”
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