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A Boundary condition at photoisomerization position

For free aqueous diffusion of cGMP, Fick’s Second Law is

∂cG

∂t
= D

∂2cG

∂x2
. (A.1)

Within the rod outer segment, though, longitudinal diffusion is ‘baffled’ by the stack of disks,
and as a result only a fraction fA of the cross-sectional area A is available for diffusion, and
only a fraction fV of the envelope volume is cytoplasmic [1]. Furthermore, as invoked by
Lamb & Pugh [2], the cytoplasm is envisaged to have a buffering capacity BP for cGMP.
As a result, the modified diffusion equation is

∂cG

∂t
= DcG

∂2cG

∂x2
(A.2)

where the effective longitudinal diffusion coefficient DcG is

DcG =
fA

fV BP
D . (A.3)

From Fick’s First Law, the longitudinal flux of cGMP along the outer segment (which can
occur only via the available area fAA) is given by

Longitudinal flux = −D fA ANAv
∂cG

∂x
(A.4)
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where the true diffusion coefficient D, rather than the effective diffusion coefficient DcG,
must be used, and where Avogadro’s number NAv converts the units to molecules s−1. At a
disk that has received a single photoisomerization, the rate of hydrolysis of cGMP is

Hydrolysis rate = E∗(t)
kcat
Km

cG(x, t) = E∗(t)
1
2
kCAT

Km

cG(x, t) (A.5)

where kcat = 1
2
kCAT is the maximal rate of hydrolysis by a single G∗−E∗, and kCAT is the

maximal rate of hydrolysis by the fully-activated PDE dimer.

In the symmetrical case, with a single photoisomerization occurring at the middle of the
outer segment (x = x0), the magnitude of the unidirectional flux on either side of this point
is half the total hydrolytic rate, so that from Eqns (A.4) and (A.5)

D fA ANAv
∂cG

∂x

∣∣∣∣
x+
0

=
1

2
E∗(t)

1
2
kCAT

Km

cG(x0, t) . (A.6)

From Eqn (A.3) we have
D fA = DcG fV BP D (A.7)

and substitution into Eqn (A.6) gives

DcG fV A BP NAv
∂cG

∂x

∣∣∣∣
x+
0

=
1

2
E∗(t)

1
2
kCAT

Km

cG(x0, t) (A.8)

or

∂cG

∂x

∣∣∣∣
x+
0

=
E∗(t)

2DcG

[ 1
2
kCAT

Km

fV A BP NAv

]
cG(x0, t) . (A.9)

Formulation of Lamb & Pugh (1992)

For the term in [ ] above, we note that Lamb & Pugh [2] defined βsub in their Eqn (4.4) as

βsub =

1
2
kCAT

Km

Vcyto NAv BP
(A.10)

where the cytoplasmic volume Vcyto is given by

Vcyto = fV A L . (A.11)

Hence

βsub L =

1
2
kCAT

Km

fV ANAv BP
(A.12)

where the right hand side of the equation above is the term in [ ] in Eqn (A.9). Hence the
latter equation may be rewritten as

∂cG

∂x

∣∣∣∣
x+
0

=
E∗(t) βsub L

2DcG

cG(x0, t) (A.13)

which is presented as Eqn (4.11) in the Theory section, and which is exactly equivalent to
Eqn (B 1) of Lamb & Pugh [2].
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Formulation of Gross, Pugh & Burns (2012)

In a variant of the symbols, Gross et al [3] defined βidv (see p. 1781) as

βidv =
kcat
Km

Vid NAv

=

1
2
kCAT

Km

Vid NAv

(A.14)

where the interdiscal cytoplasmic volume Vid is given by

Vid = fV A δ (A.15)

with δ = L/Ndisks being the mean interdisk spacing. Hence

βidv δ =

1
2
kCAT

Km

fV ANAv

(A.16)

or

βidv δ

BP
=

1
2
kCAT

Km

fV A BP NAv

(A.17)

where the right hand side is again the term in [ ] in Eqn (A.9). Accordingly, Eqn (A.9) may
be rewritten in the terminology of Gross et al [3] as

∂cG

∂x

∣∣∣∣
x+
0

=
E∗(t) βidv δ

2DcG BP
cG(x0, t) . (A.18)

We noticed that this equation differs from Eqn (6) of [3], which instead gives the denominator
as 4 DcG. As the buffering power BP is not mentioned anywhere in Gross et al [3], it is
clear that they assumed BP = 1. Accordingly, in their terminology, the required boundary
condition is

∂cG

∂x

∣∣∣∣
x+
0

=
E∗(t) βidv δ

2DcG

cG(x0, t) . (A.19)

Eqn (6) of Gross et al [3] differs from this equation by a factor of 2, and in our view this
occurred because they incorrectly invoked an additional volume fraction of 1

2
. As a result,

their subsequent analysis of ‘rogue’ responses actually calculated 2βidv, instead of βidv.

Finally, we note that
βidv δ = βsub L (A.20)

so that
βidv = Ndisks βsub (A.21)

where Ndisks = L/δ is the number of disks in the outer segment.
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