
Lymphomas of the ocular adnexa account for approxi-
mately 8% of extranodal lymphomas and are the most 
common malignant tumor arising from the ocular adnexa 
[1,2]. The incidence rose steadily between 1975 and 2001, 
with an annual increase of 6.3%, and geographic differences 
in epidemiology have been reported [3,4]. In Korea, extra-
nodal marginal zone B-cell lymphoma of mucosa-associated 
lymphoid tissue (EMZL) accounts for a higher proportion 
(80–90%) of all ocular adnexal lymphomas than in Western 
countries (35–70%) [5-7]. In addition, a younger age of onset, 
predominance of conjunctival involvement, earlier stage of 
diagnosis, and better prognosis are characteristic findings in 

Korean patients with ocular adnexal lymphoma [5]. These 
geographically distinctive epidemiologic patterns suggest 
environmental and genetic factors, including microbiologic 
infection [3,4,8].

Among several microbiological agents, Chlamydophila 
psittaci (Cp) has been suggested as a possible etiologic agent. 
In 2004, Ferreri et al. reported that they detected Cp DNA 
with targeted PCR in 80% of patients with ocular adnexal 
EMZL [9]. However, subsequent studies revealed that the 
prevalence of Cp infection in ocular adnexal EMZL cases 
varied among countries [4,10,11]. Regarding South Korea, 
a relatively high prevalence of Cp positivity (75–77%) has 
been repeatedly reported [12,13]. In addition, Cp-eradicating 
treatment using doxycycline antibiotics has been attempted as 
first-line targeted therapy in South Korea [4,13,14].
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Purpose: To compare genome-wide DNA methylation profiles according to Chlamydophila psittaci (Cp) infection status 
and the response to doxycycline treatment in Korean patients with ocular adnexal extranodal marginal zone B-cell 
lymphoma (EMZL).
Methods: Twelve ocular adnexal EMZL cases were classified into two groups (six Cp-positive cases and six Cp-negative 
cases). Among the 12 cases, eight were treated with doxycycline as first-line therapy, and they were divided into two 
groups according to their response to the treatment (four doxy-responders and four doxy-nonresponders). The differences 
in the DNA methylation states of 27,578 methylation sites in 14,000 genes were evaluated using Illumina bead assay 
technology. We also validated the top-ranking differentially methylated genes (DMGs) with bisulfite direct sequencing 
or pyrosequencing.
Results: The Infinium methylation chip assay revealed 180 DMGs in the Cp-positive group (74 hypermethylated genes 
and 106 hypomethylated genes) compared to the Cp-negative group. Among the 180 DMGs, DUSP22, which had two 
significantly hypomethylated loci, was validated, and the correlation was significant for one CpG site (Spearman coef-
ficient=0.6478, p=0.0262). Regarding the response to doxycycline treatment, a total of 778 DMGs were revealed (389 
hypermethylated genes and 336 hypomethylated genes in the doxy-responder group). In a subsequent replication study 
for representative hypomethylated (IRAK1) and hypermethylated (CXCL6) genes, the correlation between the bead chip 
analysis and pyrosequencing was significant (Spearman coefficient=0.8961 and 0.7619, respectively, p<0.05).
Conclusions: Ocular adnexal EMZL showed distinct methylation patterns according to Cp infection and the response 
to doxycycline treatment in this genome-wide methylation study. Among the candidate genes, DUSP22 has a methyla-
tion status that was likely attributable to Cp infection. Our data also suggest that the methylation statuses of IRAK1 and 
CXCL6 may reflect the response to doxycycline treatment.
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Several genetic alterations have been reported in ocular 
adnexal EMZLs [15]. The most common alterations are the 
translocations t(11;18; q21;q21), t(14;18; q32;q21), and t(1;14; 
p22;q32), trisomy 3 and trisomy 18. Epigenetic alterations in 
association with aberrant promoter hypermethylation have 
also been observed in mucosa-associated lymphoid tissue 
(MALT) lymphomas. Regarding gastric EMZL, several 
studies have demonstrated that Helicobacter pylori (Hp) 
infection is associated with gene promoter hypermethylation 
or hypomethylation with specific methylation profiles [16,17].

Recently, Choung et al. [13] also reported the methyla-
tion profile of nine tumor suppressor genes and reported that 
aberrant promoter methylation is a frequent event in ocular 
adnexal EMZLs. However, genome-wide screening of DNA 
methylation profiles associated with ocular adnexa EMZL 
has not been performed. In the present study, we evaluated 
genome-wide DNA methylation profiles associated with Cp 
infection and the response to doxycycline treatment.

METHODS

Patients: Twelve tissue samples were collected from patients 
who had undergone an incisional biopsy operation and had 
been histologically confirmed as having an EMZL at Seoul 
National University Hospital, Seoul National University 
Bundang Hospital, and Seoul National University Boramae 
Hospital between 2011 and 2012. In the operating room, the 
tumor sample was immediately divided into two pieces; 
one piece of tissue was sent to the pathologist for histologic 
examination, and the other piece was stored fresh frozen at 
−80 °C. The histopathologic diagnosis of the sample was 
confirmed by a hematopathologist.

A staging workup was performed based on a physical 
examination, complete ophthalmologic examination, chest 
radiograph, magnetic resonance imaging (MRI) of the orbit, 
computed tomography (CT) of the chest and abdomen, and 
bone marrow aspiration and biopsy. All patients were staged 

according to the American Joint Committee on Cancer clas-
sification [18].

All samples were examined for Cp positivity and divided 
into two groups (six Cp-positive samples and six Cp-negative 
samples; Figure 1). Among the 12 patients, eight patients 
were treated with doxycycline (100 mg twice a day for 3 
weeks, two cycles) as a single, first-line treatment; they were 
followed for more than 6 months, and they were divided into 
two groups according to their treatment responses (four doxy-
responders and four doxy-nonresponders). Doxycycline was 
given orally at a dose of 100 mg twice a day for 3 weeks, 
followed by 3 weeks of no doxycycline treatment, and then 
the treatment was repeated for an additional 3 weeks. The 
objective lymphoma response to the therapy was evalu-
ated in all patients 9 weeks after the first dose, then every 
3 months for 2 years, and every 6 months thereafter with 
biomicroscopic examination or orbital imaging study (CT or 
MRI) by experienced oculoplasty specialists. The response 
was assessed using modified international workshop criteria 
[19]. Complete remission (CR) was defined as the complete 
disappearance of all detectable ophthalmic and radiographic 
evidence of disease and eye-related symptoms, if they were 
present before therapy. Partial remission (PR) was defined 
as a 50% or more decrease in the sum of the product of the 
greatest diameters. Stable disease (SD) was defined as the 
regression of any measurable lesion by less than 50% or 
no change in size of the measurable lesions. Progressive 
disease (PD) was defined by the development of a new lesion 
or by a 50% or more increase from the smallest sum of the 
product of the greatest diameters. The patient demographic 
and clinical data are shown in Table 1. All protocols of this 
study adhered to the tenets of the Declaration of Helsinki 
and the ARVO statement on human subjects. The study was 
approved by the Committee on Human Research of the Seoul 
National University Hospital (IRB No. H-1012–086–344), 
and informed consent was obtained from all patients enrolled.

Figure 1. Amplification of Chla-
mydophila psittaci (Cp) DNA using 
PCR in ocular adnexal extranodal 
marginal zone B-cell lymphoma 
(EMZL). Six cases of 12 ocular 
adnexal EMZL showed positive 
bands and defined as Cp-positive 

samples, and the others were grouped as Cp-negative group. P, positive control for C. psittaci; N, negative control; L, size marker 485 
(100-bp DNA ladder).
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Molecular Vision 2014; 20:1037-1047 <http://www.molvis.org/molvis/v20/1037> © 2014 Molecular Vision 

1039

Detection of Chlamydophila DNA: Chlamydophila DNA was 
generously provided by Dr. Seung-Joon Lee of Kangwon 
National University, Korea. The DNA was amplified with 
PCR and cloned using the TOPO TA cloning kit (Invitrogen, 
Carlsbad, CA) according to the manufacturer’s instructions. 
For verification, the cloned DNA was sequenced in both 
directions with Big Dye terminator (Applied Biosystems, 
Foster City, CA) and analyzed using an ABI 3730XL DNA 
analyzer (Applied Biosystems). For each extracted DNA 
sample, touchdown enzyme time-release PCR (TETR-PCR) 
for Cp was performed as described previously, but with 
some modification of the annealing temperature. The primer 
sequences for Cp were 5’-CCC AAG GTG AGG CTG ATG 
AC-3’ (forward) and 5’-CAA ACC GTC CTA AGA CAG 
TTA-3’ (reverse). Ta-CLONED Chlamydophila DNA was 
used as a positive control. The annealing temperature was 
54 °C. The amplified DNA fragments were electrophoresed 
on 2% agarose gels and were visualized after staining with 
ethidium bromide. To exclude the possibility of contamina-
tion of the extracted DNA, the PCR products positive for Cp 
DNA were sequenced.

DNA extraction and quality control: The genomic DNA was 
isolated using a QIAamp DNA Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. The 
average 260/280 ratio was 1.85. The quality of the DNA 
samples was checked using a NanoDrop ND-1000 UV-Vis 
Spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA). Then, the samples were electrophoresed on agarose 
gels, and the samples with intact genomic DNA, no smearing 

on the agarose gel, were selected for further experiments. The 
intact genomic DNA was diluted to 50 ng/µl, and the quan-
tity of the DNA was determined using a PicoGreen dsDNA 
quantification kit (Invitrogen).

Methylation profile: Genome-wide methylation profiling of 
27,578 methylation sites in 14,000 genes was conducted with 
an Infinium methylation assay that combined the Illumina 
Infinium Whole Genome Genotyping (WGG) assay and 
BeadChip technology. The study included almost 13,000 
genes in the NCBI CCDS database (Genome Build 36), 
144 markers of methylation hotspots in cancer genes, 982 
markers of cancer-related targets, and 110 miRNA promoters. 
One random sample from the 12 samples was hybridized to 
different chips (technical replicate). We obtained high repro-
ducibility in the technical replicates (r2≥0.98).

Data analysis: For measuring methylation, we used the Illu-
mina BeadStudio software to generate the level of methylation 
(β) value for each locus from the intensity of the methylated 
and unmethylated probes. The background normalization 
was conducted using the negative control signals from each 
well. Average normalization was performed to minimize the 
scanner-to-scanner variation; the average intensity values of 
the first color channel for all the wells in each chip were used 
to calculate the mean value, which was scaled to 1. The β 
was calculated as (intensity of methylated probe)/(intensity 
of methylated probe + intensity of unmethylated probe). 
Thus, β ranged between 0 (least methylated) and 1 (most 
methylated) and was proportional to the degree of methyl-
ated state of any particular loci. The Infinium methylation 

Table 1. CliniCal CharaCTerisTiCs of The sTudy subjeCTs.

Case 
No.

Age /
Sex Tumor location (T stage*) Cp Initial 

treatment
Response to 
treatment†

Response to 
Doxycycline

Follow-up-
(month)

P1 64/F Lacrimal gland (2b) + Doxy CR Yes 13
P2 39/F Conjunctiva (1b) + Doxy CR Yes 24
P3 43/M Orbit (2c) + Doxy SD No 17
P4 51/M Conjunctiva (1b) + Doxy PD No 36
P5 53/F Conjunctiva and orbit (2a) + Doxy SD No 20
P6 29/F Conjunctiva (1b) + Doxy - 4
N1 29/F Conjunctiva (1b) - Doxy CR Yes 34
N2 49/M Orbit (2c) - Doxy SD No 15
N3 79/F Conjunctiva (1b) - Doxy PR Yes 15
N4 48/M Orbit and eyelid (3) - RT CR - 4
N5 68/F Orbit (2c) - - - - -
N6 30/F Conjunctiva (1b) - Doxy - - -

* American Joint Committee on Cancer staging [18] † The response to the therapy was assessed 9 weeks after the first-dose, then every 3 
months for 2 years, and then every 6 months afterward, using modified international workshop criteria [19] Cp, Chlamydophila psittaci; 
Doxy, doxycycline; RT, radiation therapy; CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
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chip data were analyzed with ArrayAssist software. To 
identify differentially methylated genes (DMGs) between 
the Cp-positive and Cp-negative samples or doxy-responder 
and doxy-nonresponder samples, we applied two significance 
criteria: (1) the p value calculated using the Student t test and 
corrected for multiple testing with the Benjamini-Hochberg 
adjustment and (2) the difference between the mean β values 
(delta mean). The genes were defined as DMGs if their t test 
p values were <0.05 and the |delta mean| (the absolute values 
of the delta mean) between the two groups were >0.06. The 
resulting differential methylation profiles were analyzed with 
DAVID bioinformatics resources for the Gene Set Enrich-
ment Analysis (GSEA). A hierarchical clustering analysis was 
based on the Euclidean distance matrix, and the complete 
linkage method was performed with an R package. The color 
scale of the heat map represents densely methylated loci (red) 
to sparsely methylated loci (green).

Bisulfite direct sequencing: The targeted fragment was 
amplified from bisulfite-treated DNA, cloned, and sequenced 
to obtain an accurate map of the distribution of CpG methyla-
tion. The PCR products were then cloned into the pEasy-T1 
vector (Transgen, Beijing, China), and ten colonies were 
randomly chosen and sequenced.

Pyrosequencing: Sodium bisulfite modification of the 
genomic DNA was performed. The primers were designed 
using the PSQ Assay Design program v.1.0.6 (Qiagen), and 
the sequences are presented in Table 2. The pyrosequencing 
was conducted using PyroMark Gold Q96 Reagents (Qiagen), 
and PCR was conducted using AccuPower HotStart PCR 
Premix (Bioneer, Daejeon, Korea). The pyrosequencing data 
were analyzed with Pyro Q-CpG V:1.0.9 analysis software 
(Qiagen).

RESULTS

Differential methylation according to Chlamydophila psit-
taci infection: To investigate whether ocular adnexal EMZLs 
have differential methylation patterns regarding Cp infec-
tion status, a whole-genome methylation array analysis was 
performed by using the Illumina Infinium Human Methyla-
tion 27 Bead Chip. When we compared all 27,578 loci, 184 
CpG sites were differentially methylated at |delta mean|≥0.06 
and p value <0.05. The list of differentially methylated sites 
is shown in Appendix 1. Four pairs of loci corresponded to 
the same gene; 180 genes were differentially methylated. The 
Cp-positive samples showed hypermethylation in 75 of the 
CpG sites (40.8%, 74 genes) and hypomethylation in 109 of the 
CpG sites (59.2%, 106 genes). To assess the ability of the 184 
differentially methylated loci to distinguish the Cp-positive 
group from the Cp-negative group, the methylation patterns 
of the sites were hierarchically clustered by measuring the 
Euclidian distance between the methylation levels across the 
loci (Figure 2). The samples were significantly segregated 
according to Cp status.

The results of the gene set analyses using PANTHER 
are shown in Appendix 2. The most significant annotation 
clusters of enriched gene sets (p<0.05) were inferred from 
functional annotation analysis with DMGs according to their 
methylation statuses. The DMGs were enriched the most in 
genes for biologic processes related to immunity and defense 
(p=8.69E-07), followed by signal transduction (p=0.001). 
Regarding molecular function, DMGs were related to receptor 
(p=5.75E-08), ion channel (p=9.35E-05), and extracellular 
matrix (p=0.008).

We subsequently performed bisulfite direct sequencing 
for dual specificity protein phosphatase 22 (DUSP22; gene 
ID 56940), which showed the most differentially methylated 
loci at two sites. DUSP22 also belongs to the gene sets of 
immunity and defense and signal transduction. The primers 
and PCR conditions are described in Table 2. The methylation 
state of one CpG site showed a significant correlation with 

Table 2. Primer sequenCes for bisulfiTe sequenCing or PyrosequenCing.

Genes Method Sequences (5’-3’) Annealing Tm 
(°C)

Product size 
(bp)

DUSP22 (1st 
site) bisulfite sequencing F: GGGGAGTTTTTAGAGATTAGGTTTTT R: 

AATCTCCAAATCCCCCTTTAAC 71 131

DUSP22 (2nd 
site) bisulfite sequencing F: GTATAGAAAGTTTTGTTTTTTA R: 

TATTCATCCCATTCCCCATAATA 81 226

IRAK1 pyrosequencing F: TTAAATGAGGGTTGGGGTAGTAGTAA R: 
ACAACAACCTTAAACCATTCAATCTC 69 109

CXCL6 pyrosequencing F: GGTTATTGGAGAGGAGGAGTATTT R: 
CAACAAAATCTCATCCCCTAAACTTA 68 95

http://www.molvis.org/molvis/v20/1037
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that of the Infinium methylation chip assay (Spearman coef-
ficient=0.6478, p=0.0262); however, the other CpG site failed 
to replicate the methylation array results (Figure 3).

Differential methylation according to responsiveness to 
doxycycline: Regarding the doxycycline response, the general 
methylation level was similar between the two groups, 
showing a bimodal distribution. There were a total of 778 
CpG sites differentially methylated at |delta mean|≥0.06 and 
p value<0.05. The differentially methylated CpG sites are 
listed in Appendix 3. Several CpG sites corresponded to the 
same gene, and 697 genes were differentially methylated. The 
doxy-responder samples showed hypermethylation in 442 of 
the CpG sites (56.8%, 389 genes) and hypomethylation in 336 
of the CpG sites (43.2%, 308 genes). Figure 4 displays hierar-
chical clustering data, which clearly distinguishes the doxy-
responder samples from the doxy-nonresponder samples.

The results of the gene set analyses using PANTHER 
are shown in Appendix 4. The most significant annotation 
clusters of enriched gene sets (p<0.05) were inferred from 
functional annotation analysis with DMGs according to 
their methylation statuses. The DMGs were most enriched 
in genes for biologic processes related to signal transduc-
tion (p=9.20E-08). Regarding molecular function, DMGs 
were related to the receptor (p=2.76E-08), transcription 
factor (p=0.00015), and extracellular matrix (p=0.00057). 
To validate the epigenetic control of DMGs for the response 
to doxycycline, we chose one hypomethylated (interleukin-1 
receptor-associated kinase 1, IRAK1;gene ID 3654, OMIM: 

300283) gene and one hypermethylated (CXC chemokine 
ligand 6, CXCL6; gene ID 6372, OMIM: 138965) gene from 
the signal transduction gene set.

The methylation levels of IRAK1 and CXCL6 were exam-
ined with pyrosequencing. The results obtained for IRAK1 
and CXCL6 were in accordance with the results obtained by 
the Infinium methylation chip assay with the Spearman’s 
rank correlation coefficient (p=0.0026, Spearman coef-
ficient=0.8961; p=0.0368, Spearman coefficient=0.7619, 
respectively; Figure 5).

DISCUSSION

Using a genome-wide approach, we compared the methyla-
tion state of 27,578 loci of 14,000 genes between Cp-positive 
and Cp-negative samples and between samples of responders 
and non-responders to doxycycline treatment. The cluster 
analysis showed that all cases could be clearly distinguished 
based on their Cp status using 180 DMGs. The methylation 
profiles showed a distinct signature according to the response 
to doxycycline treatment with 778 DMGs.

Over the last decade, Cp has been proposed as a possible 
etiologic agent of ocular adnexal EMZL [20]. The role of Cp 
in the pathogenesis of ocular adnexal EMZL has not been 
fully elucidated. Chlamydophila species are obligate intracel-
lular bacteria that cause persistent infections. Cp infection 
may trigger a chronic antigenic stimulus that can drive the 
development of acquired MALT and overt EMZLs [4]. In 

Figure 2. Hierarchical clustering 
analysis based on the DNA meth-
ylation data obtained from six 
Chlamydophila psittaci–positive 
and six Chlamydophila psittaci–
negative ocular adnexal extranodal 
marginal zone B-cell lymphoma 
cases (Chlamydophila psittaci 
[Cp]-positive: P1–P6, Cp-negative: 
N1–N6). The 184 significant meth-
ylated CpG sites were selected with 
the criteria |delta mean| >0.06 and 
p<0.05. The color scale of the heat 
map represents densely methylated 
loci (red) to sparsely methylated 
loci (green). All cases were clearly 
clustered into two groups.

http://www.molvis.org/molvis/v20/1037
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addition to antigenic stimulation, a potential, direct oncogenic 
role of Cp has recently been suggested. Some researchers 
have reported that these organisms have mitogenic activity, 
induce oxidative damage, and cause resistance to apoptosis 
of the infected cells [21,22]. In this study, there were only 
180 DMGs over 14,000 tested genes, and these DMGs were 
frequently included in gene sets of immunity and defense 
and signal transduction gene sets; such distinct methylation 
patterns are likely attributable to the Cp infection itself rather 
than different oncogenic mechanisms.

DUSP22 is an atypical DUSP and can activate c-Jun 
N-terminal kinase 1 (JNK1; gene ID 5599, OMIM: 601158) 

through the activation of the upstream mitogen-activated 
protein kinase kinase 3 (MKK3; gene ID 5606, OMIM: 
602315) and MKK7 (gene ID 5609, OMIM: 603014) [23]. 
JNKs are responsive to stress stimuli and play a role in T cell 
differentiation and cellular apoptosis, and dysfunctional JNK 
signaling is associated with inflammatory, vascular, neuro-
degenerative, metabolic, and oncological diseases. Several 
studies have reported the activation of the JNK pathway 
upon Chlamydophila infection [24,25]. In the present study, 
DUSP22 was hypomethylated in the Cp-positive group, which 
may suggest that the DUSP22 gene induces gene expression 
by activating transcription. In addition, DUSP22 could act 

Figure 3. Results of direct bisulfite 
sequencing for two differentially 
methylated CpG sites of DUSP22 
in ocular adnexal extranodal 
marginal zone B-cell lymphoma. 
A: The first CpG site, target ID 
cg15383120, promoter, CpG island. 
B: The second CpG site, target ID 
cg11235426, nonpromoter, CpG 
island. Each row represents a bacte-
rial clone with a circle symbolizing 
a CpG site. Methylated and unmeth-
ylated CpG sites are indicated by 
black and white circles, respec-
tively. Mutated sites are indicated 
by gray circles. Correlation analysis 
between the Infinium methylation 
chip assay and bisulfite sequencing 
revealed that only the second CpG 
site showed significant correlation 
between the two methods.

http://www.molvis.org/molvis/v20/1037
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as a tumor suppressor gene [26]. DUSP22 is upregulated in 
B-cell chronic lymphocytic leukemia in patients harboring 
mutations at the IgVH gene (ID 3509, OMIM 147070), 
which regarded as a good prognostic marker [27]. DUSP22 
rearrangements have recently been reported in subsets of 
cutaneous and systemic T-cell lymphomas [28-30]. DUSP22 
is also downregulated in breast cancers, which typically 
show amplification at the 8p11–12 chromosomal region [31]. 
DUSP22 was recently suggested as a potential therapeutic 
target for these disorders [32].

The standard treatment for ocular adnexal EMZL is low-
dose radiotherapy. Although radiotherapy has a high rate of 
local control, ranging from 80% to 100%, potential ocular 
toxicity and the risk of distant metastasis are major limita-
tions. Several alternative treatment modalities are available, 
including chemotherapy, monoclonal anti-CD20 antibody 
treatment, interferon immunotherapy, and doxycycline anti-
biotic treatment [15]. For gastric EMZL, antibiotic therapy 
targeting Helicobacter pylori induces lymphoma regression 
in 6–70% of stage IE cases [33]. Similarly, Cp-eradicating 
treatment has been suggested for ocular adnexal EMZL with 
an average response rate of 45% [34]. However, there is debate 
over the association between Cp status and the response to 
doxycycline treatment. A Korean study reported a similar 
response rate to doxycycline treatment regardless of Cp status 
(60% versus 60%, p=1.00) [14]. Ferreri et al. reported a better 
response rate in a Cp-positive group than in a Cp-negative 
group (64% versus 38%, p=0.25) [35]. Doxycycline treatment 
targets Cp eradication, but lymphoma regression has been 

observed in Cp-positive and Cp-negative patients, and other 
undiscovered doxycycline-sensitive organisms may be associ-
ated with ocular adnexal EMZL or that doxycycline has an 
antineoplastic or immunomodulatory effect [36]. Thus, we 
analyzed the methylation profiles according to Cp status and 
the response to doxycycline treatment separately. Only nine 
genes overlapped between the DMGs determined with the 
two criteria.

The ontologic analysis of the DMGs according to the 
response to doxycycline showed that methylation occurred 
in genes involved in various biologic processes and molecular 
functions. The most distinct ontologic category was signal 
transduction. Some genes involved in the pathogenesis 
of ocular adnexal EMZL deserve our attention and were 
validated with pyrosequencing. IRAK1, a serine-threonine 
kinase, was identified as a key component of the interleukin-1 
receptor (IL-1R) signaling pathway and involved in toll-like 
receptor signaling [37]. IRAK1 has recently been indicated as 
a gene associated with systemic lupus erythematosus. IRAK1 
also may play a regulatory role in diabetes and atheroscle-
rosis. CXCL6, known as granulocyte chemotactic protein 2, is 
a small cytokine belonging to the chemokine family. Chemo-
kines induce directional cellular migration during inflam-
mation, and prolonged inflammation is thought to facilitate 
carcinogenesis by providing a microenvironment that is 
ideal for tumor cell development and growth [38]. CXCL6 
displays angiogenic effects in tumors and is upregulated in 
gastrointestinal tumors, lung cancer, and osteosarcoma. Inter-
estingly, the angiogenic effect of CXCL6 correlates with the 

Figure 4. Cluster analysis and 
heatmap of methylation level 
between ocular adnexal extranodal 
marginal zone B-cell lymphoma 
doxy-responders (n=4) and doxy-
nonresponders (n=4). The methyla-
tion levels at the 778 CpG sites were 
used for hierarchical clustering. All 
cases were clearly clustered into 
two groups in this dendrogram.

http://www.molvis.org/molvis/v20/1037
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Figure 5. Validation of Infinium methylation chip assay by pyrosequencing. Pyrogram data of A: CXCL6 and B: IRAK1 in ocular adnexa 
extranodal marginal zone B-cell lymphoma. C: Correlation analysis between Infinium Methylation Chip Assay and pyrosequencing of 
IRAK1 and CXCL6.
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expression of matrix metalloproteinase (MMP)-9/gelatinase-
B, and doxycycline has anti-MMP properties. In this study, 
the doxy-response group showed CXCL6 hypomethylation, 
suggesting elevated CXCL6 expression. This finding suggests 
inhibition of MMP activity is a possible mechanism of action 
of doxycycline in ocular adnexal EMZL, but further research 
is needed to clarify this point.

We used Illumina’s Methylation 27 assay to evaluate 
DNA methylation profiles of ocular adnexal EMZL at the 
genome-wide level. The reproducibility of the Infinium meth-
ylation chip assay was reported to have a correlation greater 
than 0.98 between technical replicates [39]. In addition, the 
Infinium methylation chip assay has been compared to other 
platforms and has shown reliable results with high correlation 
rates ranging from 0.8 to 0.9 [40].

In this study, we used several technical approaches to 
validate the methylation status of the selected genes. There 
was a strong correlation between the pyrosequencing and 
array analysis when we tested IRAK1 and CXCL6. For 
DUSP22, we used bisulfite direct sequencing instead of 
pyrosequencing to validate two differentially methylated 
CpG sites because the primer design for pyrosequencing was 
structurally problematic. For one CpG site (the second CpG 
site), the results were highly correlated with those of the array 
analysis. However, the bisulfite direct sequencing yielded a 
generally low level of methylation of the other CpG site (the 
first CpG site) of DUSP22 in all samples, which was incon-
sistent with the methylation chip assay. Although bisulfite 
sequencing is one of the most frequently used techniques 
for measuring DNA methylation, the robustness of bisulfite 
sequencing is dependent on the number of clones examined 
and is subject to more cloning biases [41]. An adequate sample 
size and larger number of clones will be needed to overcome 
the variability of the results of bisulfite direct sequencing.

This study had several weaknesses. First, we analyzed 
four doxy-responders and four doxy-nonresponders regard-
less of their Cp status because of the small sample size. 
Although several studies have reported that the response 
rate to doxycycline treatment and Cp status were not associ-
ated, samples with uniform characteristics will help verify 
the mechanism of doxycycline treatment in ocular adnexal 
EMZL cases. Second, we analyzed only the DNA methylation 
status, and additional experiments are required explore the 
relationship between methylation status and mRNA expres-
sion with a much larger sample. Many epigenetic changes 
in cancer can be passenger events that are not pathogenic 
and, thus, should be supported by gene expression analysis. 
In future studies, the correlation between methylation status 
and gene expression should be addressed.

In conclusion, this study is the first report on methylation 
profiles based on genome-wide methylation in ocular adnexal 
EMZL tissues. The results demonstrated that several genes 
were methylated differentially regarding Cp infection status 
and the response to doxycycline treatment. Among the 
candidate genes, methylation of DUSP22 was likely attribut-
able to Cp infection. The methylation status of IRAK1 and 
CXCL6 differed between the doxy-responders and the doxy-
nonresponders, suggesting the possible clinical application of 
therapies targeting those genes. Additional large-scale studies 
are necessary to confirm our results.

APPENDIX 1.

CpG sites differentially methylated in Cp-positive samples 
compared to Cp-negative samples. To access the data, click 
or select the words “Appendix 1.”

APPENDIX 2.

CpG sites differentially methylated between Doxy-responders 
and Doxy-nonresponders. To access the data, click or select 
the words “Appendix 2.”

APPENDIX 3.

Summary of gene set enrichment analysis with DMGs 
according to Cp infection. To access the data, click or select 
the words “Appendix 3.”

APPENDIX 4.

Summary of gene set enrichment analysis with DMGs 
according to response to doxycycline. To access the data, 
click or select the words “Appendix 4.”
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