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Purpose: To determine the phenotype–genotype correlations in patients with corneal dystrophies associated with human
transforming growth factor-β-induced (TGFBI) mutations at the National Taiwan University Hospital.
Methods: Twenty-five affected patients from 15 families with corneal dystrophies were recruited. They underwent slit-
lamp biomicroscopy and visual acuity examinations. Genomic DNA was extracted from their peripheral blood, and the
exons amplified from TGFBI were sequenced.
Results: Eleven patients from 9 families with granular corneal dystrophy (GCD) presented with a wide spectrum of dot
or fleck opacities and shared some similar clinical features. Genetic studies revealed an R124H mutation in 5 families and
an R555W mutation in 4 families. A patient with GCD type 2 and an R124H mutation showed a marked increase in
opacities in the laser-assisted in situ keratomileusis (LASIK) flap interface. Six patients from 3 families with superficial
honeycomb opacities had an R555Q mutation. Of the 4 patients from 3 families with variant lattice line opacities, 3 from
2 families had an R124C mutation, whereas 1 from the third family had an A546D mutation. Spontaneous mutations were
detected in 2 families: an R124C mutation in 1 family with lattice corneal dystrophy (LCD) type I and an A546D mutation
in the other with atypical LCD.
Conclusions: In most cases, TGFBI-linked corneal dystrophies had good phenotype–genotype correlations; however,
some phenotypic variation was present. The most common mutations in Taiwan were R124H in GCD type 2 and R555W
in GCD type 1. The R555Q mutation in Thiel–Behnke corneal dystrophy is not as rare in Taiwan as it is in other Asian
countries. Sequencing of TGFBI can aid in the precise classification of these corneal dystrophies.

Corneal dystrophies are a heterogeneous group of
inherited, bilaterally progressive corneal opacities without
inflammation. These variable opacities often result in
recurrent corneal erosion and visual impairment. Most corneal
dystrophies show an autosomal dominant inheritance pattern
with a high degree of penetrance. Three autosomal dominant
corneal dystrophies, including granular dystrophy Groenouw
type I (GCD1), lattice type I (LCD1), and Avellino (ACD or
GCD2), have been mapped to chromosome 5q31 [1]. GCD1
is characterized by bread crumb- or snowflake-like opacities
that stain positive on Masson trichrome staining [2]. LCD1 is
primary amyloidosis characterized by linear or branching
stromal opacities, which stain positive on staining with Congo
red and are birefringent under polarized light [3]. GCD2 is
characterized by the coexistence of granular deposits and
amyloid deposits [4,5]. Corneal opacities of these 3 corneal
dystrophies often develop in childhood and gradually progress
to cause visual impairment between the third and fifth decades
of life. The transforming growth factor β-induced (TGFBI)
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gene, which is expressed in the corneal epithelium and stromal
keratocytes, was mapped to the chromosome 5q31 locus [6].
In 1997, Munier et al. [7] reported 4 different missense
mutations in TGFBI at the CpG dinucleotide of 2 arginine
codons: an R555W mutation in a family with GCD1, an
R555Q mutation in a family with Reis-Bücklers corneal
dystrophy (RBCD), an R124C mutation in 2 families with
LCD1, and an R124H mutation in 2 families with GCD2. In
retrospect, the phenotype of the family with the R555Q
mutation should have been designated as Thiel–Behnke
corneal dystrophy (TBCD) instead of RBCD because the
original form of RBCD is characterized by confluent
geographic opacities, and TBCD is characterized by
honeycomb-shaped opacities. RBCD and TBCD are also
called corneal dystrophy of Bowman’s layer type 1 (CDB1)
and type 2 (CDB2), respectively. These are caused by R124L
and R555Q mutations in TGFBI, respectively [8,9]. A wide
range of variant stromal/Bowman’s layer corneal dystrophies
has been found to be associated with different TGFBI
mutations. At present, more than 50 mutations have been
identified in TGFBI, with R124 and R555 being the most
frequent sites of mutation in various populations. Although a
good correlation has been observed between genotype and
phenotype—R555W in GCD1, R124C in LCD1, R124H in
GCD2, R124L in RBCD, and R555Q in TBCD—some
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families having corneal dystrophies with TGFBI mutations
have been reported to have variant phenotypes [10,11].
Clinical presentation may not be sufficient to classify these
stromal/Bowman’s layer corneal dystrophies. Hence,
screening for mutations in TGFBI may facilitate the
classification of corneal dystrophies, especially in the cases
of atypical clinical presentations.

In this study, we aimed to identify the clinical features
and genetic mutation spectrum in patients with TGFBI-linked
corneal dystrophies from the National Taiwan University
Hospital, Taipei, a tertiary-care referral medical center in
northern Taiwan. Although genetic studies on TGFBI-linked
corneal dystrophies have been reported in several populations,
no large genetic studies have been reported in the Taiwanese

population [12]. The correlations between phenotype and
genotype may differ across different ethnic backgrounds;
therefore, detection of the characteristics of TGFBI mutations
in specific populations is important. This may increase our
understanding of the clinical–molecular correlations in
TGFBI.

METHODS
Subjects: Twenty-five affected patients with corneal
dystrophies from 15 unrelated families were recruited from
National Taiwan University Hospital. The study was
performed in accordance with the tenets of the Declaration of
Helsinki and was approved by the Research Ethic Committee
of the National Taiwan University Hospital. Informed consent

TABLE 1. POLYMERASE CHAIN REACTION PRIMERS FOR THE 17 EXONS OF THE TGFBI GENE.

Exon Sequences of primers
1 F: 5′-CCGCTCGCAGCTTACTTAAC-3′
 R: 5′-AGCGCTCCATGCTGCAAGGT-3′
2 F: 5′-GTGGACGTGCTGATCATCTT-3′
 R: 5′-TCCTGGCTGGTTACAGATAC-3′
3 F: 5′-GCTGTGGAGGCAACTTAGTG-3′
 R: 5′-GAGAATGCCATGTCCTTGTG-3′
4 F: 5′-CCCCAGAGGCCATCCCTCCT-3′
 R: 5′-CCGGGCAGACGGAGGTCATC-3′
5 F: 5′-TCCTTAGGAAGTGCTGGACT-3′
 R: 5′-CCCCTACCCCATTAGGATAG-3′
6 F: 5′-TGGGCAGATTGTAACTGTGA-3′
 R: 5′-CCCTTACCCGAAGGGTCTCA-3′
7 F: 5′-CCCACAGGCTGCTCTGGCTG-3′
 R: 5′-TGCTCACCTCTCAGGGCTTC-3′
8 F: 5′-ACCCCAGACCTGCTGAACAA-3′
 R: 5′-GGCCTACCTGAGTCTGGGAT-3′
9 F: 5′-CTTGTAGCCAAGAGCACTATT-3′
 R: 5′-ATGTTACCTTTGAATACAGA-3′

10 F: 5′-CTTGTAGATGGAACCCCTCC-3′
 R: 5′-AACTTACATTACGATAAACA-3′

11 F: 5′-TGTGCAGAGCCTCTGCATTG-3′
 R: 5′-TAATTACCTAAAGCGATTGT-3′

12 F: 5′-CATGCTGGTAGCTGCCATCC-3′
 R: 5′-TCTTTACCCAAGAGTCTGCT-3′

13 F: 5′-CCTGCAGGAGATGCCAAGGA-3′
 R: 5′-CACTTACCAAGCTGACTTCC-3′

14 F: 5′-CTTTTAGAAAAACAAATGTG-3′
 R: 5′-CACTTACCTGGAGGCTGCAG-3′

15 F: 5′-TCTTCAGCCAACAGACCTCA-3′
 R: 5′-ATCTTACCCTGGAAAACGCT-3′

16 F: 5′-CTTTCAGGCTTCCCAGAGGT-3′
 R: 5′-GACTCACCTAGTCGCACAGA-3′

17 F: 5′-TTTTCAGCCCCTGTCTATCA-3′
 R: 5′-TATGTTTCTTTGGTTTTATT-3′
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was obtained from the participants before the collection of
their peripheral blood. Slit-lamp biomicroscopy and visual
acuity and fundus examinations were performed for all
participating individuals to determine the disease phenotype.
Some of the first-degree relatives were also recruited when
available. Two probands with corneal dystrophies received
penetrating keratoplasty, and histopathological examinations
were performed on their corneal specimens.

Molecular genetic analysis: Genomic DNA was extracted
from the peripheral blood lymphocytes by using the Puregene
DNA Purification Blood Kit (Gentra, Minneapolis, MN)
according to the manufacturer’s instructions. Each exon of
TGFBI was amplified by polymerase chain reaction (PCR) by
using 50 ng of genomic DNA and a GeneAmp PCR system
9700 thermocycler (Applied Biosystems, Foster City, CA).
Primers used for amplifying each exon are listed in Table 1.
PCR was performed in 25-μl reaction mixtures containing 20
pmol of each primer, 1× reaction buffer, 100 µM
deoxynucleotide triphosphates, and 1 unit of Taq polymerase
(Applied Biosystems). Touchdown PCR was performed for
all exons except exon 11. Cycling conditions were as follows:
initial preheating step at 95 °C for 11 min to achieve a hot start
effect, 12 cycles of denaturation at 95 °C for 30 s, initial
annealing at 63 °C for 30 s, and extension at 72 °C for 30 s;
the annealing temperature was reduced by 0.5 °C per cycle
until 56 °C. This was followed by 35 cycles of 95 °C for 30 s,
56 °C for 30 s, and 72 °C for 30 s, and a final extension step
at 72 °C for 10 min. The PCR cycling conditions for exon 11

included an initial denaturation at 95 °C for 2 min, followed
by 35 cycles of 95 °C for 30 s, 54 °C for 30 s, 72 °C for 30 s,
and a final extension step at 72 °C for 7 min. Exons 4 and 12
were sequenced first, followed by the sequencing of exons 11,
13, and 14; the remaining coding exons were sequenced later.
The resulting PCR products were purified using the QIAquick
PCR Purification Kit (Qiagen, Valencia, CA). Bidirectional
sequencing of amplicons was performed using the same PCR
forward and reverse primers with the BigDye terminator cycle
sequencer kit (Applied Biosystems). The products of the
sequencing reaction were analyzed using a fluorescent ABI
Prism 3100 DNA sequencer (Perkin Elmer Applied
Biosystems, Warrington, UK).
Histopathological examinations: The corneal specimens
obtained using penetrating keratoplasty were processed for
examination by light microscopy. The tissues were fixed in
10% formalin and embedded in paraffin. The paraffin sections
were stained with hematoxylin and eosin (H&E), periodic
acid-Schiff (PAS), and Congo red stains.

RESULTS
Phenotypes: Of the 25 affected patients, 22 belonged to 12
families whose pedigrees are shown in Figure 1 and Figure 2,
and the remaining 3 (NTUH-4, NTUH-6, and NTUH-15)
were sporadic cases. Nine affected subjects from 6 families
(NTUH-1, NTUH-2, NTUH-6, NTUH-16, NTUH-22, and
NTUH-25) presented with various gray–white granular
opacities with or without line opacities. The number of
granular opacities ranged from 4 in a 40-year-old female

Figure 1. Pedigree of families with TGFBI-linked corneal dystrophies. Squares and circles represent male and female participants, respectively.
Open symbols indicate unaffected individuals, and solid symbols indicate affected members. Probands are marked by an arrow. Asterisks
indicate the members who underwent clinical examination and genetic analysis.

Molecular Vision 2012; 18:362-371 <http://www.molvis.org/molvis/v18/a39> © 2012 Molecular Vision

364

http://www.molvis.org/molvis/v18/a39


proband of the NTUH-2 family (Figure 3A) to more than 60
in a 26-year-old female proband of the NTUH-1 family
(Figure 3B). In the NTUH-2 family, the proband’s younger
sister had no remarkable opacities and had normal visual
acuity before laser-assisted in situ keratomileusis (LASIK)
surgery according to medical records obtained from the
referring doctor. She had uncomplicated bilateral LASIK
surgery elsewhere. Six months after the operation, some
crumb-like opacities and numerous fine confluent opacities
developed in the LASIK flap interface, and her visual acuity
declined to 20/100 in both eyes (Figure 3C). Most of the
crumb-like opacities in these families were elongated or
stellate in shape except for some thin lines in the proband, a
57-year-old man, of the NTUH-6 family (Figure 3D). Four
affected subjects from 3 families (NTUH-3–5) had superficial
bread crumb–like or gray–white granular opacities, which
corresponded to GCD1 (Figure 3E). Six affected subjects
from 3 families (NTUH-7, NTUH-8, and NTUH-18)
presented with reticular-like central superficial corneal
opacities in the Bowman’s layer and superficial stroma
corresponding to CDB. All the 6 affected subjects had a
history of recurrent corneal erosions since early childhood and
mild-to-moderate visual impairment. The proband (a 68-year-
old man) of the NTUH-18 family received penetrating
keratoplasty in the right eye (Figure 3F). The proband (a 40-
year-old man) of the NTUH-9 family and his elder son (age,
11 years) showed flake-dot opacities with lattice-line
opacities in both eyes (Figure 3G). The parents of the proband
of the NTUH-9 family had clear corneas in both the eyes. The
proband (a 40-year-old man) of the NTUH-15 family had been
experiencing intermittent ocular irritation in both eyes for

several years. His corneas showed superficially central diffuse
opacities with some very faint fine lines in the periphery,
which was thinner and shorter than that observed in the case
of typical LCD1 (Figure 3H). He was initially diagnosed as
having CDB or atypical LCD1. The proband (a 42-year-old
woman) of the NTUH-11 family had small, polymorphic,
opaque dots with some filamentous lines in the central cornea
(Figure 3I). She had blurry vision since the second decade of
life without any episode of corneal erosion and had received
penetrating keratoplasty in the left eye. Her parents’ corneas
were normal and clear.

Molecular genetic analysis: Eight affected subjects from 5
families (NTUH-1, NTUH-2, NTUH-16, NTUH-22, and
NTUH-25) had an R124H mutation, but the proband of the
NTUH-6 family had an R555W mutation (Figure 4A). All 4
affected subjects from the 3 families with GCD1 (NTUH-3–
5) had the R555W mutation. Six affected subjects from the 3
families with CDB (NTUH-7, NTUH-8, and NTUH-18) had
an R555Q mutation. The proband of the NTUH-15 family
with atypical LCD was found to have an R124C mutation
rather than the R555W or R124L mutation commonly noted
in patients with CDB (Figure 4B). The proband of the
NTUH-11 family with polymorphic opacities and some line
opacities had an A546D mutation (Figure 4C). Her parents
and son did not have this mutation (Figure 2A). The proband
of the NTUH-9 family with lattice lines and his affected son
had the R124C mutation, but the proband’s parents did not
have this mutation in TGFBI (Figure 2B). Five distinct
TGFBI mutations were identified in these 15 families having
different subtypes of corneal dystrophies (Table 2).

Figure 2. Pedigrees of the NTUH-11 and
NTUH-9 families with TGFBI
sequences. Open symbols indicate
unaffected individuals, and solid
symbols indicate affected members.
Probands are marked by an arrow. A:
The proband of the NTUH-11 family
had a A546D mutation in exon 12, but
her parents and son had normal TGFBI
sequences. B: The proband of the
NTUH-9 family and his elder son had a
heterozygous C→T transition (R124C)
in exon 4, but the proband’s parents and
his younger son had TGFBI sequences
without this R124 mutation.
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Histopathological examinations: Microscopic examination of
the corneal specimens obtained using penetrating keratoplasty
in the proband of the NTUH-18 family showed irregular
epithelial thickness, vacuolization in the basal epithelium,
focal disruption of the Bowman’s layer, and undulating
subepithelial fibrosis (Figure 5A,B). Corneal specimens
obtained after penetrating keratoplasty in the proband of the
NTUH-11 family showed numerous eosinophilic deposits
interspersed within the entire stromal layer (Figure 5C). These
deposits showed apple-green birefringence on Congo red

staining under polarized light, corresponding to amyloid
deposits (Figure 5D).

DISCUSSION
Mutations in TGFBI have often been identified in several
different stromal/Bowman’s layer corneal dystrophies,
including in GCD1, GCD2, RBCD (CDB1), TBCD (CDB2),
LCD1, and atypical LCDs [13]. The classic GCD1 with the
R555W mutation presents as multiple small white spots in the
Bowman’s layer and superficial corneal stroma. Most of our

Figure 3. Clinical phenotypes of TGFBI corneal dystrophies. A: Four round white opacities in the proband of the NTUH-2 family. B: Numerous
crumb-shaped opacities in the proband of the NTUH-1 family. C: Numerous sand-like opacities with some rod-dot granules in the LASIK
flap interface in the proband’s younger sister in the NTUH-2 family. D: Some dots with thin lines in the proband of the NTUH-6 family. E:
Superficial breadcrumb-like opacities in the proband of the NTUH-4 family. F: Superficial reticular opacities in the proband of the NTUH-18
family. G: Flake-dot opacities with lattice-line opacities in the proband of the NTUH-9 family. H: Superficially central diffuse haze with some
very fine and short lines in the periphery in the proband of the NTUH-15 family. I: Numerous small, polymorphic dots with some filamentous
lines in the proband of the NTUH-11 family.
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patients with the R555W mutation showed the typical features
of GCD1 noted worldwide; however, the proband of the
NTUH-6 family showed dot and line opacities, which have
rarely been reported in GCD1 with the R555W mutation. The
vision of patients with the R555W mutation was mildly
affected, with a range between 20/30 and 20/50. The discrete
round opacities in our GCD2 patients with the R124H
mutation were larger than those noted in classical GCD1 and
occasionally coexisted with line opacities, sharing some
features with GCD1 and LCD. GCD2 is usually linked with
the R124H mutation and has considerable intra- and
interfamilial phenotypic variation. Wide interfamilial
variation was also observed in our 5 GCD2 families. The
proband of the NTUH-2 family had few granular deposits
without any line opacities, unlike the other 4 families with
GCD2. In fact, this proband could have been misdiagnosed as
having GCD1 because GCD2, like GCD1, might show an
initial presentation of a few granular deposits. Our results

indicated that there was a good phenotype–genotype
correlation in most patients with GCD1 and GCD2, but
phenotypic variation was noted in some cases.

Exacerbation of corneal opacities after LASIK was
observed in the younger sister of the proband of the NTUH-2
family with GCD2. Several reports have shown rapid
acceleration of granular corneal opacities after LASIK in
patients with GCD2 [14,15]. The increased deposits often
appeared in the flap interface and mainly within the ablation
zone, suggesting that an increased production of TGFBI
protein by keratocytes in the region of corneal trauma was
related to lamellar corneal incision and excimer laser ablation.
Hence, we recommend that patients with GCD2 or any other
TGFBI-linked corneal dystrophies should not be considered
for LASIK surgery because the corneal opacities in the
interface might increase, and the vision may worsen after the
operation. Detailed examination of corneas and ensuring no
overlooking of any bilaterally subtle corneal opacity in the

Figure 4. TGFBI mutations in 3 families with corneal dystrophies. A: A heterozygous C→T transition (R555W) in exon 12 in the proband of
the NTUH-6 family. B: A heterozygous C→T transition (R124C) in exon 4 in the proband of the NTUH-15 family. C: A heterozygous C→A
transition (A546D) in exon 12 in the proband of the NTUH-11 family.

TABLE 2. CLINICAL PHENOTYPES AND GENOTYPES OF THE PROBANDS OF 15 FAMILIES WITH TGFBI-LINKED CORNEAL DYSTROPHIES.

Family Phenotype Mutations Age (proband) at
examination (years)

VA (proband) at examination

NTUH 1 Numerous granules and some stellate opacities R124H 26 OD: 0.7; OS: 0.7
NTUH 2 Some granular opacities R124H 29 OD: 1.0; OS: 0.6 (RD s/p SB)
NTUH 16 Numerous granules and some stellate opacities R124H 60 OD: 0.05; OS: 0.2 with cataract (OU)
NTUH 22 Numerous granules and some stellate opacities R124H 30 OD: 1.0; OS: 1.0
NTUH 25 Numerous granules and some stellate opacities R124H 68 OD: 0.5; OS: 0.5 with cataract (OU)
NTUH 6 Some granules with slim lines R555W 52 OD: 0.5; OS: 0.6
NTUH 3 Bread crumb opacities R555W 39 OD: 0.5; OS: 0.6
NTUH 4 Bread crumb opacities R555W 24 OD: 0.4; OS: 0.3
NTUH 5 Bread crumb opacities R555W 45 OD: 0.5; OS: 0.5
NTUH 7 Reticular superficial opacities R555Q 21 OD: 0.6; OS: 0.6
NTUH 8 Reticular superficial opacities R555Q 57 OD: 0.1; OS: 0.1 with cataract (OU)
NTUH 18 Reticular superficial opacities R555Q 68 OD: 0.05; OS: 0.05 with cataract (OU)
NTUH 9 Flake-dot opacities with lattice lines R124C 36 OD: 0.3; OS: 0.4
NTUH 15 Superficially diffuse haze with some fine lines R124C 32 OD: 0.4; OS: 0.4
NTUH 11 Polymorphic dots with lattice lines A546D 39 OD: 0.4; OS: 0.2

               OD: right eye, OS: left eye, OU: both eyes. RD s/p SB: retinal detachment after surgery with scleral buckle.
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patients referred for LASIK surgery is important. Further
genetic analysis of TGFBI in cases in which corneal dystrophy
is suspected can help identify patients with atypical GCD2 and
prevent this adverse event from occurring after LASIK
surgery.

Patients with corneal opacities at the level of Bowman’s
layer have previously been diagnosed as having CDB, but
some of them were thought to have a superficial variant of
granular corneal dystrophy [16]. Typical RBCD (CDB1) and
TBCD (CDB2) are characterized by geographic opacities and
honeycomb-shaped opacities, respectively. Most patients
reported to have CDB1 had the R124L mutation and those
reported to have CDB2 had the R555Q mutation [17,18].
However, the R124L and R555Q mutations do not account for
all forms of CDB. Other mutations may cause similar
phenotypes, including a ΔF540 mutation described in a

Sardinian family and a G623D mutation [19,20]. In addition,
Yee et al. [21] reported a family with TBCD showing
“peculiar curly” filaments in the sub-epithelial layer of the
cornea. This trait was mapped to chromosome 10q23–24
instead of the TGFBI locus at 5q31. Although these reports
suggest the phenotypic and genetic heterogeneity inherent in
CDB, our study in the 6 patients of our 3 CDB families
indicated that patients with TBCD would have characteristic
presentation of honeycomb corneal opacities at the Bowman’s
layer and superficial stroma, and were correlated with the
R555Q mutation. Histology of these honeycomb corneal
opacities was an undulating fibrous tissue in the
subepithelium and focal disruption of the Bowman’s
membrane. However, histology may not be available in all
patients with CDB. Genetic study of TGFBI can be accurate

Figure 5. Histopathology. A: The corneal specimen from the proband of the NTUH-18 family showed irregular thickness of the epithelium,
vacuolization in the basal epithelium, and focal subepithelial fibrosis interposed between the irregular epithelium with a “sawtooth-like”
configuration (PAS staining, 200×). B: Focal disruption of Bowman’s membrane (arrows) was replaced by subepithelial fibrotic tissue (star)
(H&E staining, 400×). C: The specimen from the proband of the NTUH-11 family showed several eosinophilic deposits interspersed within
the entire corneal stromal layer (H&E staining, 200×). D: These deposits showed green birefringence under a polarized microscope (Congo
red staining, 200×).
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to classify these CDB because of a good genotype-phenotype
correlation in TBCD/R555Q.

LCD1 is characterized by a network of delicate
interdigitating filaments within the corneal stroma. The
disease usually begins in the first decade of life with
symptoms of recurrent painful epithelial erosions. Lattice
lines and diffuse opacification of the central cornea develop
gradually after the erosions and amyloid accumulations. The
most common mutation in TGFBI in patients with LCD1 is
R124C. Numerous forms of atypical LCD have been reported
to be caused by P501T, V505D, L518P, I522N, L527R,
V539D, A546D, A546T, P551Q, L569R, H572R, V625D, or
H626R mutations [22-27]. The proband of the NTUH-11
family had the A546D mutation and blurred vision, with no
history of recurrent corneal erosion. She presented with
polymorphic refractile dots and filamentous lines in the deep
stroma, which were unlike those found in typical LCD1. The
histological examination showed amyloidal deposits in the
entire stromal layer. These findings were similar to the cases
of polymorphic corneal amyloidosis first described by Eifrig
et al. [25]. However, 2 reports revealed that the A546D
mutation could also cause phenotypes of either atypical LCD
or GCD1 [28,29]. Reports of the A546D mutation in TGFBI
have been rare. This mutation might result in different clinical
phenotypes.

Interestingly, the proband of the NTUH-15 family with
the R124C mutation had diffuse central grayish opacities in
the subepithelium and superficial stroma without typical
branching refractile lattice lines that are characteristic of
LCD1. Unfortunately no histology was available in this
proband, but these superficial opacities were more similar to
CDB than to typical LCD1. Several studies have reported
similar findings. For instance, a Chinese family with RBCD
had the R124C mutation instead of the common R124L
mutation, and a family from New Zealand with atypical CDB
had the H626P mutation, a known mutation linked to variant
LCD [30,31]. These results indicate that phenotypic variabilty
may occur in patients with R124C or H626P mutations, which
segregate with phenotypes of either CDB or LCD. The
superficial stromal opacities in this proband with the R124C
mutation were not like classic TBCD, RBCD, or LCD1. This
atypical presentation may be due to interaction between
TGFBI and other genes or the effect of environmental factors
on gene presentation.

Spontaneous mutations in the TGFBI gene have
previously been reported, including an R124L mutation in 2
patients with RBCD and an R555Q mutation in 2 families with
CDB [32,33]. In our study, spontaneous mutations were found
in 2 families, one with an R124C mutation and another with
an A546D mutation. In addition, the spontaneously mutated
allele could be transmitted to the next generation. Most of the
reported spontaneous mutations in the TGFBI gene are at the
2 common hotspots, namely, R124 and R555, and involve a

G:C→A:T transition more frequently than an A:T→G:C
transition [34]. Spontaneous mutation of A546D with an
A→C transition has not yet been reported.

Our study showed that codons R124 and R555 of
TGFBI were the 2 mutational hotspots in autosomal dominant
corneal dystrophies in Taiwan, as they were in other ethnic
groups. Interestingly, the predominant mutations varied
across different countries. For example, the classic GCD1/
R555W mutation is the most prevalent mutation in Europe.
The GCD2/R124H mutation is the most common mutation in
Japan and Korea [35,36]. The GCD1/R555W and GCD2/
R124H mutations are the 2 most common mutations in China.
The GCD1/R555W and LCD1/R124C mutations are the 2
most common mutations in India [37]. The LCD/H626R and
GCD1/R555W mutations are the 2 most common mutations
in Mexico [38]. The GCD1/R555W is the most common
mutation in New Zealand [39]. The pattern of TGFBI
mutations showed some correlations among these Northeast
Asian countries and India, but not Vietnam, LCD/H626R
more predominant than LCD1/R124C [40]. In our study, the
GCD2/R124H and GCD1/R555W mutations were the 2 most
common mutations in Taiwan, as has been reported in China.
This may be due to the shared ancestry between the Taiwanese
and Chinese populations. Interestingly, the TBCD/R555Q
mutation (3/15) in our study was not rare as in China (1/64)
or Japan (6/286). This may be related to the founder effect, a
bias of a small sample size, the influence of admixture
between the Taiwanese ancestral population and the local
South Polynesian population, or spontaneous TGFBI
mutations. Phylogenetic trees and correspondence analysis
calculated from human leukocyte antigens allele frequencies
have shown that Taiwanese have a more affinity to southern
Asian population than northern Han Chinese or Japanese
[41]. Our results of TGFBI mutations in Taiwanese were
correspondence to these findings. A close relationship
between Taiwan indigenous people and Oceanians, and 13%
of Taiwan indigenous genes in Taiwanese gene pool were also
found [42]. It may explain this unique result of TGFBI
mutations in Taiwanese. Further large-scale studies involving
more Taiwanese families with TGFBI-linked corneal
dystrophies are required to confirm our preliminary findings
and the speculation of the relationship between Taiwanese and
other Asian population. More reports on TGFBI mutations
from other Southeast Asian or Pacific Ocean countries might
help clarify the difference between ethnic background and
genotypes and understand their possible relationship across
different countries.

In conclusion, a good phenotype–genotype correlation
was observed in most patients with TGFBI-linked corneal
dystrophies. Intra- and interfamilial phenotypic variation
occurred occasionally. Genetic screening of TGFBI might
facilitate precise clinical diagnosis and corneal dystrophy
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classification, especially in patients with atypical
presentation.
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