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Diabetic retinopathy is a serious long-term complication of diabetes mellitus. There is considerable interest in using mouse
models, which can be genetically modified, to understand how retinopathy develops and can be inhibited. Not all retinal
lesions that develop in diabetic patients have been reproduced in diabetic mice; conversely, not all abnormalities found
in diabetic mice have been studied or identified in diabetic patients. Thus, it is important to recognize which structural
and functional abnormalities that develop in diabetic mice have been validated against the lesions that characteristically
develop in diabetic patients. Those lesions that have been observed to develop in the mouse models to date are
predominantly characteristic of the early stages of retinopathy. Identification of new therapeutic ways to inhibit these early
lesions is expected to help inhibit progression to more advanced and clinically important stages of retinopathy.

Studies in diabetic animals have provided valuable
insight into the pathogenesis of diabetic retinopathy (DR). For
example, studies of diabetic dogs demonstrated that improved
glycemic control could inhibit the development of the
retinopathy more than 16 years before a comparable
demonstration in diabetic patients [1]. The possibility of
genetic manipulation, and the availability of reagents and
antibodies for molecular studies, has led to great interest in
smaller species such as the mouse for studies of DR. In
addition, the development of noninvasive, translational
imaging methods that can be applied to both humans and
animals has opened new opportunities for investigating the
pathophysiology of DR. Several laboratory species have been
compared with regard to which retinal lesions develop in
diabetes, with the general conclusion that more types of
lesions develop in larger, longer-lived models (primates,
dogs) than in smaller, shorter-lived models (rats, mice) [2].

At present, a range of anatomic and functional retinal
lesions linked with DR have been identified by a variety of
methods. The identification of the lesions that are most critical
to this retinopathy, as well as the methods that best
demonstrate these abnormalities, has been controversial. In
the present text, “robust” lesions are defined as those that
occur in both human and mouse models, and have been
identified by different laboratories, independent of the
methods used. This category does not rule out the possibility
that other retinal lesions represent real and important damage
inflicted on the retina by diabetes, but indicates only that
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important inconsistencies and/or questions remain in the
literature. To aid future efforts at translational studies, in this
review, we will emphasize existing anatomic and physiologic
lesions that fit this classification.

1. DIABETIC RETINOPATHY IN HUMANS
DR is a common complication of diabetes, and one of the
leading causes of visual loss in working age populations in
developed countries. It has been found to affect the majority
of patients who have had diabetes for 1–2 decades, although
not all patients develop a comparable severity of retinal
disease. The major risk factors of DR are the degree and
duration of hyperglycemia. The retinal lesions that develop in
type 1 diabetes are not different from those that develop in
type 2 diabetes, although the severity and/or incidence of the
lesions may differ. For example, the severity of retinal edema
and neovascularization differ between different types of
diabetes [3].
1A. Characteristic structural changes.

1A1. Vascular pathology—Clinically detectable
characteristics of DR have focused on damage to the retinal
vasculature. Based on vascular changes, DR is subdivided into
an early nonproliferative stage including progressive capillary
occlusion and degeneration (NPDR), and a more advanced,
proliferative or neovascular stage (PDR) [4]. In addition,
macular edema (i.e., retinal edema involving or threatening
the macula) can occur in both stages, can be diffuse or focal
in distribution, and can have a cystoid appearance or not.

Other vascular lesions of NPDR include the appearance
of microaneurysms, vascular nonperfusion, and degeneration
(Figure 1). Capillary degeneration and nonperfusion are
tightly associated, but it remains unclear if they occur
independently of each other, or if one always causes the other.
Nonetheless, degenerate capillaries are very important lesions
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of the retinopathy; they lead to progressive reductions in
retinal perfusion, at least locally, as more and more capillaries
become occluded [5-7]. Appreciable increases in capillary
nonperfusion/degeneration are strongly predictive of (and
likely causally related to) progression to the advanced,
neovascular stages of retinopathy in patients. Selective loss of
pericytes is also common in DR, but perfusion can continue
in capillaries missing only some pericytes.

Microaneurysms, or dot hemorrhages, are focal dilations
of individual retinal capillaries, and are detectable
ophthalmoscopically in diabetic patients. Increasing numbers
of microaneurysms have a strong predictive value with respect
to the progression of retinopathy [8,9]. Signs of advanced
NPDR include venous beading and loops, intraretinal
microvascular abnormalities, and large areas of capillary
nonperfusion (as assessed using fluorescein angiography).

PDR is observed to develop in areas adjacent to extensive
vascular nonperfusion, which are presumably ischemic [10,
11]. This advanced stage of DR is characterized by the
appearance of new, fragile, and fenestrated retinal blood
vessels that penetrate the inner limiting membrane and enter
the vitreous (i.e., preretinal neovascularization). These
delicate vessels hemorrhage easily. The resulting pooling of
blood in the vitreous will reduce in the amount of light
reaching the retina and potentially decrease vision. Perhaps
more importantly, fibrovascular scar tissue can form around
the neovascularization, producing retinal tears and tractional
detachment with subsequent blindness.

1A2. Neuroglial pathology—Diabetes can also damage
nonvascular cells of the retina. In autopsy samples, retinal
ganglion cells are lost, at least in part via apoptosis [12-19].
In vivo scanning laser polarimetry or optical coherence
tomography (OCT) studies have also measured a thinning of
the nerve fiber layer in some diabetic patients [20-26]. It is not
yet known if ganglion cell loss in diabetic patients is severe
enough to contribute to impaired vision.

1A3. Retinal thickness—OCT studies have also
identified retinal thickening and serous retinal detachment in
some diabetic patients [27-31]. However, some authors report
that foveal thickness is similar among diabetics and

nondiabetics when data are controlled for age, race, and sex
[32].

1A4. Permeability and edema—In early NPDR,
apparent focal increases in vascular permeability (as assessed
by focal accumulation of fluorescein near retinal vessels) are
clearly associated with well defined microaneurysms
[33-35]. Diffuse accumulation also occurs, but is not
specifically associated with microaneurysms. These findings
do not rule out an alternative possibility that a functional
defect leading to the impaired removal of fluorescein
contributes to the accumulation of the contrast agent as well
as to the edema [36,37]. Baseline fluorescein accumulation in
patients with DR was predictive of progression to
photocoagulation for clinically significant macular edema
[38].

1A5. Glial activation—Induction of glial fibrillary
acidic protein (GFAP) is a marker of glial activation, and
upregulation of this protein occurs in Muller cells from the
retinas of diabetic patients [39]. Activation of macro- and
microglia occurs in the retinas of diabetic patients, but is of
unknown significance [39-43]. Vascular endothelial growth
factor, which is strongly implicated in retinal
neovascularization and permeability in diabetes, is produced
in retinal Muller cells [40].

1B. Characteristic functional defects: The above catalog
of structural lesions, while critical in the clinical management
of DR, provides little insight into the underlying mechanisms
or pathophysiology of the disease, especially during its
emerging, clinically silent phase. The pathophysiology of DR
has also been extensively studied to better understand the
effects of diabetes on the retina. These investigations offer a
different perspective on retinal disease caused by diabetes.

1B1. Perfusion and autoregulation—Much research
has been directed at measuring diabetes-induced alterations in
retinal perfusion, although there has been substantial
disagreement in the literature regarding whether perfusion is
increased, decreased, or unchanged [44-48]. The use of
multiple different methods for monitoring plasma flow and
erythrocyte velocity and transit time has likely contributed to
the disparate findings. Nevertheless, steps toward

Figure 1. Demonstration of clinical and
experimental diabetes-induced
degenerate capillaries. Black arrows are
diabetes-induced degenerate capillaries
and pericyte ghosts are shown in white
arrow, and capillary microaneurysm
(MA) in isolated retinal vessels. A: A
diabetic patient having non
proliferavtive diabetic retinopathy
(NPDR). B: A C57Bl/6 mouse after nine
months of diabetes. Pericyte ghosts are
more difficult to detect in mice retinas
than in most other species.
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understanding these differences come with evidence that
perfusion changes are linked to levels of hyperglycemia and
increasing duration of diabetes, along with the severity of
retinopathy [47,49]. Retinal perfusion abnormalities are not
detectable in patients with tight glycemic control [50].

Measurements of retinal blood flow or perfusion have
commonly been made in the unchallenged retina, but since the
retinovascular system must constantly adapt to changes in
blood pressure and metabolic demand, it is rarely found at
steady-state. Dynamic studies of autoregulation, unlike
perfusion measures [50], have robustly shown dysfunction of
the vascular system in DR [51-54] (Figure 2). Importantly,
retinal autoregulatory abnormalities can be detected in
patients with tight glycemic control [50]. Whether or not the
vascular autoregulation defects or retinal perfusion
abnormalities in diabetes are of pathogenic importance is not
yet known.

1B2. Retinal function—Electrophysiological
assessments of the retinal function in DR have been made
using electroretinogram (ERG), multifocal ERG (mfERG),
and visual evoked potential. Diabetes-induced dysfunction
includes decreased b-wave amplitude, reduction of oscillatory
potential amplitude, and delay in oscillatory potential latency
[55-64]. Changes in ERG and mfERG have been used to
predict progression of the retinopathy [55-58,65]. ERG and
visual evoked potential integrate the response across the
whole retina and do not allow the detection of localized
abnormalities. Seemingly more useful is mfERG, which
allows for functional assessment of multiple small areas of the
central retina. Importantly, mfERG studies have been able to
analytically predict the retinal locations of new
nonproliferative DR development [65]. Another noninvasive
method for analytically evaluating intraretinal function with
good panretinal spatial resolution involves the measurement
of retinal ionic regulation using manganese-enhanced

magnetic resonance imaging (MEMRI) [66]. A Food Drug
Administration (FDA)-approved manganese-based contrast
agent (Teslascan) is beginning to be used to assess clinical
applications of MEMRI in DR [67]

Diabetes also negatively impacts psychophysical
processes related to vision, such as contrast sensitivity, color
vision, and dark adaptation rates [68-71]. The reduction in
contrast sensitivity in patients with diabetes, despite normal
visual acuity, has been well documented [72,73], and
significant losses of contrast sensitivity have been observed
in patients with insulin-dependent diabetes mellitus with no
evidence of retinopathy when compared with nondiabetic
controls [74-81]. Spatial frequencies in the mid to high range
are especially sensitive to diabetes [74,76,77,79,81]. These
defects can occur before overt evidence of retinopathy is
present [82]. Such deficits are not necessarily retina-specific,
and could reflect changes anywhere in the visual system (from
anterior chamber to visual cortex and higher central
processing aspects in the brain). Diabetic patients take longer
to dark adapt than age-matched controls [68]; this
prolongation is likely caused by alterations in the
photoreceptor/pigment epithelial complex.

2. MICE AS MODELS OF DIABETIC RETINOPATHY
A variety of different animal species (including primates,
dogs, cats, pigs, rats, and mice) have been used to investigate
the pathogenesis of retinopathy. The advantages and
disadvantages of those species have been summarized
elsewhere [2], and here we will focus only on mice, which
offer considerable promise as models due largely to the
availability of molecular tools to investigate the pathogenesis
of the disease. To date, the effects of diabetes on the
development of retinopathy in mice have been studied only in
a small number of strains, so the following summary likely
will need to be amended in the future.

Figure 2. Diabetes induces defects in
retinal vascular autoregulation in both
humans and mice. A: The retinal arterial
diameter response to stimulation with
flickering light in age- and sex-matched
controls and patients with type 1
diabetes mellitus. B: Plot of superior
hemiretinal ΔPO2 during carbogen
breathing indiabetic mice and sex-
matched nondiabetic controls. *
Significant difference (p<0.05). Figure
A has been modified from Investigative
Ophthalmology and Visual Science
50:4029–32, 2009, and Figure B from
Diabetes (Copyright 2010 American
Diabetes Association From Diabetes®,
Vol. 53, 2004; 173–178. Modified with
permission from The American
Diabetes Association).
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2A. Characteristic structural changes.
2A1. Vascular pathology—Over a period of 6–9 months

of diabetes, several strains of mice (including the C57Bl/6J,
Ins2Akita, db/db, KK.Cg-Ay/J(KKAY), and Non-Obese
Diabetic strains) develop similar microvascular changes of the
retina that are consistent with the early clinical stages of
NPDR (capillary degeneration, pericyte loss, thickening of the
capillary basement membrane) [83-88]. C57Bl/6J mice made
diabetic with streptozotocin begin to show capillary
degeneration and pericyte loss histologically at about six
months after the onset diabetes (Figure 1); these lesions
become more numerous with increasing duration of the
diabetes [88-90]. Males of the Ins2Akita strain develop a
spontaneous type 1 diabetes (females are less severely
affected), with subsequent vascular histopathology [85] that
is comparable in severity and progression rate to that in
streptozotocin-treated C57Bl/6 mice. Likewise, genetically
diabetic db/db mice (type 2 diabetes) develop strand-like and
degenerate capillaries, as well as an increase in the ratio of
endothelial cells to pericytes (interpreted as a loss of pericytes)
relative to nondiabetic controls [87,91]. Crossing db/db mice
with apolipoprotein E–deficient mice results in both
hyperglycemia and hyperlipidemia [86], and these crossed
mice exhibit accelerated degeneration of the retinal capillaries
and pericytes compared with littermate controls [86]. The KK
mouse strain exhibits pericyte ghosts, degenerate capillaries,
and occasional microaneurysms between 20 and 64 weeks of
age [92]. Thus, diabetic mice develop a similar vascular
histopathology at prolonged progression rates to patients with
early DR.

Genetically modified diabetic mice, however, can
develop these structural lesions at an accelerated rate. For
example, diabetic mice deficient in endothelial nitric oxide
synthase are reported to have an earlier onset and increased
number of acellular capillaries, sustained gliosis, and
increased capillary basement membrane thickness than that
reported for diabetic C57BL/6 mice [93]. In another example,
KKAY mice have changes in their retinal capillaries after only
three months of diabetes [84]. The changes reported were
relatively nonspecific (endothelial hyperplasia, basement
membrane thickening, and some edema and vacuolar
degeneration of capillary cells), whereas none of the more
characteristic lesions of DR (microaneurysms, capillary
degeneration, pericyte loss, etc.) were discussed. Since the
lesions detected were present after only short durations of
diabetes, it is possible that they might be unrelated to diabetes.

Microaneurysms comparable to the saccular capillary
lesions characteristic of diabetes in patients are not robustly
reported in C57Bl/6 or Ins2Akita mice [85,88,89,94]. Some KK
mice have been reported to show occasional microaneurysm-
like vascular abnormalities in old animals [92].

Thickening of the vascular basement membrane has been
detected in retinal capillaries in mice with chemically induced
[88,95] and spontaneous diabetes [96-98] after about six

months diabetes. This change is not specific for the retina (as
it is also found in kidney, brain, and other sites [99,100]), or
even for diabetes [101].

A common criticism of the mouse model of DR is that it
apparently does not develop preretinal neovascularization or
other advanced lesions (retinal edema, hemorrhages,
microaneurysms) of retinopathy [94,102]. The relatively short
duration of diabetes (most studies are <1 year) and mouse
lifespan, as well as the resulting modest extent of capillary
degeneration that develops during this short interval, are
probable reasons that neovascularization has not been
observed in these models.

Nevertheless, some reports have claimed finding retinal
neovascularization. Fifteen-month-old db/db mice showed
increased density of retinal capillaries in the inner nuclear
layer, which was interpreted as evidence of vessel
proliferation [87]. However, these vessels did not extend into
the vitreous body. J129sv/B16 mice diabetic for four months
have been reported to develop neovascularization; the claimed
new vessels were demonstrated by injecting a contrast
medium (black ink) into the vascular lumen [103]. The
“neovascularization” was poorly demonstrated, and could
possibly be increased retinal vascular density within the retina
instead.

2A2. Neuroglial pathology—Neuronal cells of the retina
also are affected by diabetes, resulting in dysfunction and even
degeneration of some neuronal cells in humans and rats.
Findings in mice, however, are more controversial, and have
not necessarily been in agreement with findings in rats [88,
104-107].

The spontaneous development of diabetes resulted in loss
of cells in the ganglion cell layer in Ins2Akita mice [85,108].
After 5–6 months of hyperglycemia, there was a significant
reduction in the number of cell bodies in the retinal ganglion
cell layer, which was accompanied by a significant reduction
in the thickness of the inner plexiform layer in these animals.
By crossing Ins2Akita with mice that express fluorescent
proteins under the regulation of the Thy1 promoter, Gastinger
et al. [109] demonstrated that diabetes caused 16% depletion
of ganglion cells from the peripheral retina, but not from the
central region. Dopaminergic and cholinergic amacrine cells
are also lost from the retina in diabetes [110].

The C57Bl/6J mouse strain has also been evaluated for
diabetes-induced neurodegeneration in the retina. Some
investigators reported a 20% to 25% reduction in cells of the
ganglion cell layer of the retina at as early as 14 weeks of
diabetes [104,107,111]. Others did not detect any ganglion
cell loss at diabetes durations of up to one year [88,105,106,
112]. This difference between findings remains unexplained.
Fifteen-month-old db/db mice were reported to have
increased apoptosis of retinal ganglion cells and other cells of
the neural retina [87]. After one month of diabetes, the
numbers of apoptotic cells in the retinal ganglion cells and
inner nuclear layers were significantly greater in the diabetic
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KKAY mice than in the control group, and the rate of cell
death increased with duration of diabetes [84].

2A3. Retinal thickness—Studies of diabetic mice to date
have shown thinning of the retina [85,90], in contrast to the
retinal thickening seen in diabetic patients with retinal edema.
The relative thickness of retinal layers has been found to be
reduced in Ins2Akita mice after 22 weeks of hyperglycemia
[85], and in some (but not all) studies of C57Bl/6 mice made
diabetic using streptozotocin [88,90,104,113]. As diabetic
C57Bl/6 mice aged, MEMRI-derived measurements of retinal
thickness in vivo decreased in a linear fashion [66].

2A4. Permeability—A variety of techniques measuring
accumulation of material from plasma in the neural retina of
diabetic mice have been investigated to assess permeability
[85,89,114-118]. Such accumulation seems diffuse in nature,
and focal defects have not been reproducibly described in
diabetic mice. Importantly, interpretations of techniques
involving such tracer accumulation have not been validated
in terms of the permeability surface area product (the gold
standard metric for assessment of vascular leakage).
Furthermore, whether or not the detection sensitivity and
“lesion-type” (i.e., paracellular versus intracellular path
defects) sensitivity of these assays are similar has not been
established, making comparisons between laboratories/
methods uncertain. Despite the indication of increased
permeability in diabetes, edema has not been demonstrated in
the retina of diabetic mice based on retinal thickness
measurements (see section 2A3) [66,90]. Diabetic endothelial
nitric oxide synthase−/− mice exhibit accelerated and more
severe retinal vascular permeability than age-matched
diabetic control mice [93].

2A5. Glial activation—Diabetes has not been found to
result in upregulation of GFAP in Muller glial cells in retinas
of C57Bl/6 mice [88,105] or Ins2Akita diabetic mice [85]. In
contrast, db/db diabetic mice were reported to show GFAP
induction in diabetes, and this glial activation was inhibited
in animals lacking aldose reductase [87]. Activation of
microglia (based on shape change) also occurs in the retinas
of diabetic mice [106], but is of unknown significance.
2B. Characteristic functional defects.

2B1. Perfusion and autoregulation—Only a few
studies have been performed in diabetic mice [119-121], but
there is controversy over changes in steady-state retinal
perfusion. Nonetheless, diabetic mice demonstrate robust
alterations in retinal autoregulatory ability in response to a
provocation, similar to the defect reported in patients and
other experimental models [119-123] (Figure 2). Correction
of the retinal autoregulatory defect in diabetic mice is tightly
linked with normalization of biochemical abnormalities, and
is predictive of subsequent treatment efficacy [90,123,124].

2B2. Retinal function—The primary means of assessing
visual function in the mouse has been using electrophysiology
methods such as ERG [86,90,125,126]. These ERG data
provide evidence for dysfunction of both the outer retina and

inner retina in DR. However, because the ERG measures a
summed response from the entire retina, the relationship
between such early dysfunction and later vascular
histopathology remains unclear.

Assessment of intraretinal function in diabetes using
MEMRI has also been reported, and genetic modifications
that inhibited development of the vascular lesions of DR have
been found to normalize the MEMRI response [66],
suggesting a link between these events.

A method of assessing visual processes themselves
(contrast sensitivity and visual acuity) in mice has recently
become available [127-129] via measurement of the
optokinetic response. Using this method, diabetes-induced
reductions in contrast sensitivity and visual acuity have been
demonstrated in mice ( [130], Kern et al. submitted, and
Berkowitz et al. submitted).

3. ROBUST ENDPOINTS OF RETINOPATHY FOR
USE IN DIABETIC MICE

DR consists of a spectrum of retinal structural and functional
lesions. Since DR is a composite of several different lesions,
the presence of any one type of lesion is not sufficient to claim
that it is present, nor is the correction of any one lesion
sufficient to claim that the retinopathy has been inhibited. The
fact that a particular species or strain does not develop the full
spectrum of those lesions of retinopathy is obviously
unfortunate, but likely is due, at least in part, to important
differences between humans and rodents in the duration over
which they are exposed to diabetes. The lesions which do
develop in the animal models are characteristic of the early
stages of retinopathy, and are worthy of continued study to
identify promising new therapeutic targets at which to inhibit
progression of the retinopathy to more advanced and clinically
important stages (Table 1).

Characteristics of DR in patients that have not been
reproducibly replicated to date in diabetic mice are preretinal
neovascularization, saccular microaneurysms, retinal
hemorrhage, and retinal thickening due to edema.

Nevertheless, several abnormalities regarded as
important in the development of DR (or at least characteristic
of it) in humans have been robustly identified in diabetic
mouse models. These are the early diabetes–induced
degeneration of retinal capillaries (Figure 1), loss of capillary
pericytes and neuroglia, impairment in vessel autoregulation
(Figure 2), and deterioration of nonvascular retinal function.
The capillary degeneration/nonperfusion seems to be
especially important, because it is found in patients with
NPDR and is clinically linked to the eventual development of
PDR. A variety of validated techniques have been used to
assess the capillary degeneration and the results of using
different methods to isolate or view the retinal vessels (trypsin
digest method, elastase method, whole-mount
immunohistochemistry) have yielded similar conclusions. In
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contrast, a range of more or less validated (against standard
physiologic methods) techniques have been use to, for
example, evaluate retinal blood flow, but with less agreement
between the methods. Thus, it is unclear if such disagreements
are methodological or biologic in nature. Better attempts to
validate and improve the physiologic accuracy of a chosen
technique should help in addressing this issue.

In addition to the “standard” techniques that have been
used to demonstrate changes in diabetic patients and rodents,
new techniques (including adaptive optics, OCT, oxygenation
mapping techniques, and MRI-based methods) are offering
exciting new and potentially noninvasive ways to assess these
(and other) DR lesions in the future.
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