




Linkage analysis: Upon analysis of the X chromosome scan,
the highest two-point LOD score (Z) was found for marker
DXS7103 (Z=3.16, θ=0). One STR marker, DXS6807, which
was near DXS7103, also gave a positive LOD score of 1.28 at
θ=0 (Table 1). Other markers showed LOD scores of -∞ or
<1. Therefore, we mapped the critical region for CN to a 22
cM interval between the telomeric boundary and marker
DXS9902. Haplotypes in this region supported the linkage
results (Figure 1). Both the affected individuals, III: 7 and III:
23, had recombinations between DXS7103 and DXS9902
while the non-affected male, IV: 2, also had a recombination
in this region.

Mutation of the GPR143 gene: GPR143 was within the critical
interval and was thought to be a strong candidate for mutation.
Upon complete analysis of the coding and the adjacent intron
regions of GPR143, a deletion in exon 1 was identified in all
affected males (Figure 2). All obligate female carriers were
heterozygous for the deletion. This deletion was not detected
in normal members of the family and in other normal control
subjects. It is 37 bp long and occurs at position 222 of the
cDNA. This frameshift deletion introduces a subsequence
premature termination codon downstream. The human
GPR143 gene encodes a protein of 404 amino acids while this
deletion is predicted to result in a truncated protein with 93
amino acids. This change is predicted to result in loss of
function. Our findings suggest that this GPR143 deletion
plays a causative role in the pathogenesis of X-linked CN in
this family.

DISCUSSION
In this study, we have mapped the CN disease gene on
chromosome Xp22 and identified a novel deletion in exon 1 of
GPR143. All male patients and obligate carriers have this
mutation while the other normal members of the family and
the controls have not. We also screened another gene known
to be involved in the development of CN, FRMD7, and

identified no mutation. Thus, the FRMD7 mutations should
not be causative in CN development in this family. These
results provide strong evidence for GPR143 mutation in the
pathogenesis of X-linked CN.

The coding sequence of GPR143 is divided into nine
exons and encodes a protein of 404 amino acids containing
seven putative transmembrane domains and one potential
glycosylation site using an asparagine at codon 106 [18].
GPR143 is expressed mainly in pigment cells of the skin and
eyes. It is located on the membrane of an intracellular
organelle, the melanosome, found in pigment cells and plays
an important role in melanosomal biogenesis [19,20].
GPR143 mutations can cause ocular albinism, a disease
characterized by severe retinal hypopigmentation, foveal
hypoplasia, reduction of visual acuity, and optic misrouting
[19]. This disorder is transmitted as an X-linked trait with
affected males showing the complete phenotype and
heterozygous females showing only minor or no retinal and
cutaneous signs of the disease [19]. Thus, this disorder is
described as showing an X-linked recessive pattern of
inheritance in some reports [21]. Previous studies have
included an extensive survey of GPR143 mutations in a large
collection of patients with ocular albinism [15,18,21,22]. The
GPR143 mutations that cause ocular albinism vary. Some are
loss of function mutations, which are deletion, frameshift, and
nonsense mutations [15,21,22]. Some are missense mutations
that may cause defective intracellular transport or processing
of the GPR143 protein [18]. However, the GPR143 mutation
in the Chinese population is rarely reported. The mutation
described here is only the second GPR143 mutation reported
in the Chinese population.

Nystagmus has been reported in ocular albinism patients
with mutations in GPR143 and is thought to be a secondary
phenotype in these patients [23]. However, in our family of
subjects, none of the patients with the GPR143 mutation had
the classical phenotype of ocular albinism. Mutation analysis

TABLE 1. TWO-POINT LOD SCORE RESULT BETWEEN THE DISEASE GENE AND EIGHT MARKERS OF CHROMOSOME X.

Marker CM
Two-point LOD score at θ=

0 0.01 0.05 0.1 0.2 0.3 0.4
DXS6807 4.39 1.28 1.26 1.17 1.06 0.82 0.57 0.30
DXS7103 10.93 3.16 3.11 2.92 2.65 2.08 1.41 0.65
DXS9902 22.04 -∞ 1.50 -0.23 0.21 0.44 0.37 0.15
DXS9896 39.52 -∞ -6.79 -3.43 -2.10 -0.97 -0.48 -0.23

GATA186D06 44.96 -∞ -2.95 -1.58 -1.01 -0.49 -0.23 -0.08
DXS8015 53.71 -∞ -6.57 -3.21 -1.87 -0.72 -0.23 -0.04
DXS6810 63.59 -∞ -1.64 -0.95 -0.65 -0.37 -0.20 -0.09
DXS8035 65.79 -∞ -6.89 -3.50 -2.13 -0.92 -0.36 -0.08

Z values for eight markers on chromosome Xp are shown, and the maximum Z value occurs at marker DXS7103.
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identified a 37 bp deletion from position 222 to position 258
in exon 1. This mutation leads to frameshift and introduces a
subsequent premature termination codon downstream (Figure
2C). The predicted protein has only 93 amino acids and is
much shorter than the normal full-length protein of 404 amino
acids, suggesting that this is a loss of function mutation.
Because the deletion mutation is predicted to introduce a
premature stop codon, the mutant transcript is likely to be
degraded by the nonsense-mediated mRNA decay (NMD)
pathway [24]. If prevented by NMD, the truncated protein
may not be produced. It should be noted that this hypothesis
has not been tested directly as we were unable to obtain related
RNA of disease tissues.

This result is consistent with that of the first GPR143
mutation finding in a Chinese family with CN [10]. The
patients in that family also had CN without the classical
phenotype of ocular albinism and had a missense mutation,
which resulted in the substitution of a Ser residue with a Phe
residue in exon 2. This mutation occurred at a residue, which
is evolutionarily highly conserved from Xenopus and fish to
humans and was likely to cause the functional change, but the
extent of its influence was unknown. As compared to that
finding, the deletion found in our study, which causes

frameshift and apparent loss of function, provides stronger
evidence of an association between the GPR143 mutation and
CN disease in the Chinese population. In addition, the Chinese
population might have a variant phenotype of mutation in
GPR143 with congenital nystagmus as the most prominent
and only consistent finding. Different responses to GPR143
mutations have been previously reported among other non-
Chinese affected males (African-American and Caucasian)
with different degrees of retinal hypopigmentation and other
phenotypes [21]. This indicates that other factors such as
genetic background and/or environmental factors may modify
the phenotypes caused by GPR143 mutations.

Our findings provide one genetic basis for CN in the
Chinese population, and the GPR143 gene should be
considered in mutation testing programs for this disorder.
However, the specific molecular mechanism by which these
GPR143 mutations result in CN is still unknown, and future
functional studies may provide new insights.
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degraded under the nonsense-mediated mRNA decay (NMD) mechanism.
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