
 Molecular Vision 2007; 13:1618-26 <http://www.molvis.org/molvis/v13/a180/>
Received 25 May 2007 | Accepted 29 August 2007 | Published 10 September 2007

 Apoptosis is an evolutionarily conserved and distinct form
of programmed cell death characterized by chromatin con-
densation, DNA fragmentation, cell shrinkage, and membrane
blebbing [1,2]. Ceramide, the second messenger of the sphin-
gomyelin pathway, has emerged as a pleiotropic mediator that
regulates cell cycle arrest, differentiation, and apoptosis [3-
5]. Ceramide is generated from sphingomyelin by acid or neu-
tral sphingomyelinase or by de novo synthesis [6-8]. Agonists
of ceramide generation include cytokines such as tumor ne-
crosis factor-α [9,10], interleukine-1-β [11], γ-interferon [9],
and stress-inducing agents such as ultraviolet (UV) [12], ion-
izing radiation [13,14], and oxidation stress [15-17]. The
changes in endogenous levels of ceramide in response to these
agents occur before the onset of the first biochemical signs of
apoptosis such as the activation of caspases [18,19].

The mechanisms of ceramide-mediated apoptosis have
been under intensive scrutiny and it is believed that mitochon-
dria play an important role in this process. Ceramide induces
mitochondrial cytochrome C release before transmembrane
depolarization and caspase-3 activation [20,21]. Recent evi-
dence shows that ceramide specifically forms channels in mi-
tochondrial outer membranes, facilitating mitochondrial pro-
tein release [22]. Ceramide induces caspase-dependent [21,23]

as well as caspase-independent apoptosis [24,25]. In addition,
ceramide treatment leads to activation of the stress-activated
protein kinase (SAPK/JNK) [26,27]. Prosurvival pathways are
also affected by elevated cellular concentration of ceramide.
Ceramide suppresses Ras/Raf1/MEK1 activation [28]. Stud-
ies show that ceramide is involved in dephosphorylation and
inactivation of PI3 kinase/Akt [23]. It is suggested that
ceramide-mediated activation of phosphatases (ceramide-ac-
tivated protein phosphatase) such as PP1 and PP2 [29-31] is
involved in PI3 kinase/Akt inactivation [32].

Sphingomyelins are the major lipid components of lens
membrane [33-35]. Sphingomyelinase activity is reported in
bovine lens as well as human lens [36-38]. Moreover, Tao and
Cotlier [39] reported that ceramide levels in cataractous lens
were four times higher compared to those in aged-matched
normal lens. Nevertheless, the potential role of ceramide in
normal lens function and in the development of cataracts re-
mains to be elucidated.

The purpose of this study was to determine the effect of
ceramide on lens epithelial cell survival and apoptosis. The
results demonstrate that ceramides reduce lens epithelial cell
survival and increase apoptosis. These effects are dose-depen-
dent and time-dependent. Further evidence is provided that
ceramide-induced apoptosis mediates DNA fragmentation and
caspase activation. Ceramide treatment of cells increases re-
active oxygen species (ROS) and lipid peroxidation. As a
whole, these results suggest that ceramide is a key activator of
apoptosis in lens epithelial cells.
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METHODS
Chemical and materials:  Dulbecco’s modified Eagle’s me-
dium (DMEM), EDTA-trypsin (1X), 3-(4,5-dimethylthiozol-
2-yl)-2,5-diphenyltetrazolium bromide, antibiotic antimycotic
solution, 100X (10,000 U/ml, penicillin, 10 mg/ml strepto-
mycin, 25 µg/ml amphotericin B), gentamicin (5 mg/ml), bac-
terial sphingomyelinase, hydrogen peroxide, and paraformal-
dehyde were purchased from Sigma Chemical Co. (St. Louis,
MO). C2-Ceramide, C6-ceramide, and C2-dihydroceramide
were obtained from Biomol (Plymouth Meeting, PA). 4,6
Diamidino-2-phenylindole (DAPI) and 2,7-dichlorofluorescein
diacetate (DCFH-DA) were purchased from Molecular Probe
(Eugene, OR). Fetal bovine serum (FBS) was purchased from
HyClone Laboratories (Logan, UT)

Cell culture conditions and ceramide treatment:  Bovine
lenses were obtained from cattle of varying age at local abat-
toirs. Bovine eyes were kept on ice from the time of slaughter
until enucleation, usually less than 4-5 h. For primary cultures
of lens epithelial cells, bovine lens were dissected under ster-
ile conditions and the anterior capsules with attached epithe-
lium were cut along the equator and cultured in Dulbecco’s
modified Eagle’s medium (DMEM), pH 7.4, containing 0.5%
(v/v) antibiotic and antimycotic solution, gentamicin 5 µg/ml,
and supplemented with 10% FBS. Cells were maintained at
37 °C in humidified atmosphere containing 5% CO

2
 and ob-

served daily under inverted phase-contrast microscope
(Olympus BX41; Melville, NY) [40]. When the cultured cells
reached confluence, subcultures were prepared using 0.05%
trypsin/0.02% EDTA solution. The cells were grown on tissue
culture plates and were used one to two days after plating when
a subconfluent monolayer culture was achieved. A human lens
epithelial cell line established by transformation of primary
cultured human lens epithelium with a DNA plasmid contain-
ing the large T antigen of Simian virus (SV) 40 (SRA 01/04)
[41] was kindly provided by Dr. Venkat N Reddy (Kellogg
Eye Institute, University of Michigan, Ann Arbor, MI) and
cultured at 37 °C in DMEM supplemented with 15% FBS
containing 0.5% (v/v) antibiotic and antimycotic solution, and
gentamicin 5 µg/ml in a humidified 5% CO

2
 atmosphere.

Natural long-chain ceramides are extremely hydropho-
bic and are frequently replaced in experiments in vitro by short
chain ceramides. C2-ceramide and C6-ceramide which are
more soluble were used in this study. C2-dihydroceramide was
used as a biologically inactive ceramide analog (Figure 1).
Ceramide stock solutions were prepared in ethanol. After over-
night incubation in 1% FBS-DMEM, lens epithelial cells were
treated with ceramides in 1% FBS-DMEM in desired concen-
trations unless it was described otherwise. Vehicle-treated
controls contained less than 0.1% ethanol.

Cell viability assay:  Cell viability was evaluated by the
reduction of 3-(4,5-dimethylthiozol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) [42]. MTT is a water-
soluble tetrazolium salt that is reduced by metabolically vi-
able cells to a colored, water insoluble formazon salt. Cells
were grown in a 96 well plate (1.5x104 cells/ml) and treated
with ceramide as above. In separate experiments, BLECs and
HLECs were treated with bacterial sphingomyelinase enzyme

at various concentrations for 24 h. Cells were then washed
with 1X phosphate buffered saline (PBS; pH 7.4) and MTT
(0.5 mg/ml final concentration) was added. Cells were incu-
bated for three h at 37 °C. The assay was stopped by replace-
ment of the MTT-containing solution with 100 µl isopropanol.
The absorbance of each well was measured at 570 nm against
reference wavelength (690 nm) with ELISA Reader (SLT-Spec-
tra; Salzberg, Austria).

Apoptosis assays:  Apoptosis was determined by evalua-
tion of nuclear condensation after staining cell nuclei with
DAPI and by quantification of DNA fragment formation us-
ing Cell Death Detection ELISAPLUS (Roche Molecular
Biochemicals; Indianapolis, IN). For DAPI staining, cells were
washed two times with 1X PBS (pH 7.4), fixed with 4%
paraformaldehyde for 20 min, then labeled with DAPI (300
nM). After labeling, apoptotic cells were visualized using an
Olympus BX41 (Olympus, Melville, NY) microscope under
light or filter designed for DAPI fluorescence (Chroma, 82000
series; Olympus). Digital imaging was performed with Scion
CFW-1310C digital camera and Scion VisiCapture Applica-
tion software (version 1) and analyzed using ImageJ. Cells
were considered to be apoptotic when they showed either frag-
mented or condensed (pyknotic) nuclei. At least 300 cells were
counted in each experiment. The data show the mean±SEM
of at least three independent experiments.

For quantification of DNA fragmentation, specific deter-
mination of cytosolic mononucleosomes and oligonucleosome-
bound DNA was performed according to the manufacturer’s
instructions. In short, after ceramide treatment, the cells were
lysed and the DNA fragments in the lysate were bound to a
microtiter plate coated with monoclonal anti-histone antibod-
ies. The bound DNA fragments were then detected by peroxi-
dase-conjugated monoclonal anti-DNA antibodies and 2,2'-
azino-di-[3-ethylbenzthiazoline sulfonate]. Optical density was
measured at 410 nm (SLT-Spectra; Salzberg, Austria) and re-
sults are expressed as fold increase compared to vehicle-treated
cells. Incubation buffer (instead of the sample solution) and
DNA-histone complex included in the kit were used as the
background and the positive control, respectively. The posi-
tive control was used as validity internal control of the tech-
nique.

Caspase assay:  Activation of caspase-3/7 was determined
using the Apo-One Homogeneous Caspase-3/7 Assay
(Promega, Madison, WI) following the protocol provided by
the manufacturer. In brief, after treatment, cells were
trypsinized and 40,000 cells/100 ml were mixed with the same
volume of the Apo-One Homogeneous Caspase-3/7 reagent.
After incubation at room temperature for three h, caspase-3/7
activation were estimated from fluorescence of sample at the
excitation wavelength of 492 nm and the emission wavelength
of 521 nm using fluorescence reader FL

x
800 (BIO TEK In-

struments, Winooski, VT).
Measurement of reactive oxygen generation:  The intrac-

ellular generation of reaction oxygen species (ROS) was mea-
sured using 2',7'-dichlorodihydrofluorescein (H2-DCFH-DA)
[43]. Lens epithelial cells were cultured in a 96 well plate
(1.5x104 cells/ml) in DMEM containing 10% FBS. Cells were
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loaded with 50 µM DCFH-DA for 60 min. DCFH-DA was
removed, and cells were washed twice with 1X PBS (pH 7.4)
and treated with C2-ceramide (30 µM) in DMEM containing
10% FBS for indicated time. DCFH-DA fluorescence was
determined at an excitation of 485 nm and an emission of 538
nm by fluorescence reader FL

x
800 (BIO TEK Instruments,

Winooski, VT). Hydrogen peroxide (100 µM) was used as the
positive control (data not shown). Values were normalized to
the percentage in untreated control groups. It should be noted
that the nonfluorescent ester H2-DCFH-DA penetrates into
cells and undergoes deacetylation to DCFH by the cellular
esterases. The DCFH probe is rapidly oxidized to the highly
fluorescent compound 2',7'-dichlorofluorescein (DCF) by ROS
such as hydrogen peroxide or fatty acid peroxides.

Measurement of thiobarbituric acid reactive substances:
Lipid peroxidation is an indicator of oxidative stress. It is de-
termined by the production of thiobarbituric acid reactive sub-
stances (TBARS) [44]. In brief, cells were exposed to C2-
ceramide for 24 h, washed with PBS, then resuspended in PBS.
An aliquot was taken for a protein assay, and the remaining
solution was mixed with a solution containing 15% trichloro-
acetic acid, 0.375% thiobarbituric acid, and 0.25 N hydrochlo-
ric acid. The mixture was heated for 30 min in a boiling water
bath, cooled on ice, and centrifuged to remove the precipitate.
The absorbance of the sample was determined at 535 nm
(ε(malondialdehyde)=1.56x105 M-1 cm-1) against a blank con-
taining all the reagents minus the cell extract.

Statistical analysis:  Experimental data are presented as
the mean±SEM of the mean, and the statistical significance
was determined by student’s t-test. Differences were consid-
ered significant when p<0.05.

RESULTS
Ceramides inhibit cell viability in lens epithelial cells:  Lens
epithelial cells were plated at 60%-80% confluency and sub-

sequent treatments were in low serum-containing media (1%
FBS) since it is well recognized that biologically active lip-
ids, such as ceramide, can be sequestered by lipid-binding se-
rum proteins [45]. In this defined system, the control lens epi-
thelial cells remained attached to the culture substratum and
viability was greater than 90% for at least 24 h. Primary bo-
vine lens epithelial cells (BLEC) and human lens epithelial
cell line SRA01/04 (HLEC) were exposed to various concen-
trations of exogenous ceramides for 24 h and cell survival
was measured using the MTT method. Survival of BLEC was
reduced to 68%±9.6% and 12.3%±5.9% at 10 µM and 20 µM
of C2-ceramide, respectively (Figure 2A). C6-ceramide also
reduced BLEC survival. However C6-cermaide appeared to
be slightly less potent than C2-ceramide (Figure 2A). The IC

50

for C6-ceramide is between 20 µM and 30 µM. C2-
dihydroceramide (Figure 1), which has a similar chemical
structure, uptake, and metabolism to that of ceramide but lacks
its biological action [20,46], had very little effect on BLEC
survival (Figure 2A).

Addition of ceramides also reduced the survival of HLEC.
C2-ceramide was less potent on HLEC compared to BLEC
(Figure 2B). The IC

50
 for C2-ceramide on HLEC was between

30 µM and 40 µM. However, C6-ceramide was more potent
on HLEC. C6-ceramide at 10 µM reduced the survival to 40%
±7.7% and at 20 µM, the survival was reduced to 23% ±11.8%.
The IC

50
 for C6-ceramide was between 0 µM and 10 µM (Fig-

ure 2B). C2-dihydroceramide did not affect viability of HLECs
(Figure 2B).

To evaluate the time-dependent effect of ceramides on
lens epithelial cells, BLECs were treated with 20 µM of C2-
ceramide or C6-ceramide. C2-ceramide reduced the survival
of BLEC to 50% after eight h of treatment (Figure 2C) while
C6-ceramide did not affect cell survival during the first six h
of treatment. Survival was reduced, however, at longer treat-
ment intervals.

©2007 Molecular VisionMolecular Vision 2007; 13:1618-26 <http://www.molvis.org/molvis/v13/a180/>

Figure 1. Synthetic and natural ceramides.  Structure of ceramide analogs C2-ceramide, C6-ceramide, biologically inactive C2-dihydroceramide,
and natural C16-ceramide are presented.
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Bacterial sphingomyelinase (bSMase) has been shown to
increase natural intracellular ceramide levels by hydrolyzing
membrane sphingomyelin into ceramide and
phosphorylcholine [7,47]. Treatment of BLEC (Figure 3A)
and HLEC (Figure 3B) for 24 h with bSMase resulted in a
significant, concentration-dependent suppression of cell sur-
vival. Overall, these data show that exogenous ceramide re-
duces the viability of lens epithelial cells in a time-dependent
and concentration-dependent manner. The action of ceramides
on cell viability is specific since C2-dihydroceramide had little
effect on cell viability. In addition, the release of endogenous
natural ceramides from lens epithelial cell membrane by
bSMase treatment produced the same reduction of cell viabil-
ity.

C2-ceramide induces apoptosis in lens epithelial cells:
To determine the effect of ceramide on apoptosis in lens epi-

©2007 Molecular VisionMolecular Vision 2007; 13:1618-26 <http://www.molvis.org/molvis/v13/a180/>

Figure 2. Ceramides reduce lens epithelial cell viability.  BLECs (A)
and HLEC (B) were treated with C2-ceramide, C6-ceramide, and
C2-dihydroceramide (0-50 µM) for 24 h and cell viability was deter-
mined by MTT assay as described in Methods. Values expressed as
percent survival of vehicle-treated controls (given as 100%). C: Time-
dependence: BLECs were treated with either C2-ceramide or C6-
ceramide (20 µM) for 3, 6, 12, and 24 h and cell viability was deter-
mined by MTT assay. Values expressed as percent survival of ve-
hicle-treated controls (given as 100%). Data are mean±SEM of at
least three independent experiments performed in triplicates. In all
panels, when SEM bars are not shown, they are obscured by the sym-
bols.

Figure 3. Bacterial sphingomyelinase suppresses lens epithelial cell
survival.  BLEC (A) and HLEC (B) were treated with vehicle (zero
concentration) or different concentrations of bSMase for 24 h. Cell
viability was determined by MTT assay as described in Methods.
Values expressed as percent survival of vehicle-treated controls (given
as 100%). All values reflect the mean±SEM of at least three inde-
pendent experiments.
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thelial cells, BLECs and HLECs were treated with C2-
ceramide (0, 5, 10, and 20 µM) and levels of apoptosis were
assessed after 3 h, 6 h, 9 h, and 12 h (Figure 4). Basal levels of
apoptosis was low (>10%) in vehicle-treated cells. Apoptosis
was not markedly increased in BLECs treated with 5 µM C2-
ceramide (Figure 4A). The maximum rate of apoptosis (26%)
was achieved after 9 h of treatment and the rate did not change
up to 12 h of exposure to C2-ceramide. However, addition of
10 µM, and 20 µM C2-ceramide increased apoptosis by 31.4%
and 64.7%, respectively, after 6 h of treatment. Longer incu-
bation times resulted in higher rates of apoptosis. These treat-
ments produced characteristic morphologic changes includ-
ing cell shrinkage, rounding of cells, blebbing of the cell mem-
brane, detachment from the substratum, and cell death. Cell
detachment was only observed at the higher concentration of
ceramide (>20 µM) or long-term ceramide treatment (>48 h;
data not shown).

Similarly, treatment of HLEC with C2-ceramide increased
apoptosis. Treatment of HLECs with 5 µM C2-ceramide in-
duced a minimal level of apoptosis at 3 h and 6 h of incuba-
tion; however treatment with 5 µM C2-ceramide increased
apoptosis to 36.2% and 59.1% by 9 h and 12 h, respectively
(Figure 4B). Similarly, apoptosis was increased markedly with
10 µM C2-ceramide by 9 h and 12 h of treatment. Treatment
of HLECs with 20 µM C2-ceramide increased apoptosis at all
time intervals (Figure 4B).

To confirm a proapoptotic action of ceramide, nuclear
fragmentation was measured by Cell Death Detection
ELISAPLUS assay. BLECs were treated with various concen-
tration of C2-ceramide (0, 5, and 10 µM) for 24 h. C2-ceramide
increased cytoplasmic histone-associated DNA fragments of
lens epithelial cells 1.3- and 5.3 fold at 5 and 10 µM C2-
ceramide concentrations, respectively (Figure 4C). These re-
sults indicate that ceramide is a potent inducer of apoptosis in
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Figure 4. Ceramide induces apoptosis in lens epithelial cells.  BLEC
(A) and HLEC (B) were treated in the absence or presence of C2-
ceramide (5-20 µM) for indicated times. Levels of apoptosis were
quantitatively determined by DAPI nuclear staining as described in
Methods. Values are expressed as percentage of apoptotic cells. C
illustrates the effect of ceramide-induced apoptosis determined by
Cell Death DetectionPLUS ELISA assay as described in Methods. BLEC
were treated with C2-ceramide (0, 5, and 10 µM) for 24 h. In each
case, the data represent mean±SEM from three separate experiments.
The single asterisk denotes a p<0.05 and the double asterisk indi-
cates a p<0.001.

Figure 5. C2-ceramide increases caspase-3/7 activity in bovine lens
epithelial cells.  Cells were exposed to C2-ceramide (0-20 µM) for
12 h. Caspase-3/7 activity was measured as described in Methods.
Data shown are mean±SEM values of three separate experiments.
The asterisk denotes a p<0.05.
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lens epithelial cells and its effect is concentration-dependent
and time-dependent. DAPI as well as DNA fragmentation stud-
ies show that C2-ceramide at low concentrations (5 µM) have
a limited apoptotic effect in BLECs whereas at higher con-
centrations, it significantly stimulates apoptosis in BLECs.

Ceramide induces caspase activation:  Next, activation
of caspase in ceramide-mediated apoptosis was determined.
Treatment of BLEC with 10 µM and 20 µM of C2-ceramide
for 12 h significantly increased caspase activity 3.6 fold and
7.4 fold (Figure 5). These results suggest that ceramide-medi-

ated apoptosis of lens epithelial cells induces caspase activity
and C2-ceramide activates caspase 3/7 at relatively higher
concentration.

Ceramide increases oxidation stress in lens epithelial
cells:  To investigate whether ceramide increases the level of
ROS, BLECs were exposed to 30 µM C2-ceramide for vari-
ous time intervals. The ROS in the cells was made visible by
2',7'-dichlorodihydrofluorescien diacetate (H

2
-DCFH-DA).

C2-ceramide induced time-dependent increases in DCF stain-
ing (Figure 6A). Additionally, ceramide-mediated oxidation
was determined by lipid peroxidation. Oxidation results in the
production of lipid radicals which subsequently produces com-
plex mixture of lipid degradation products (malondialdehyde;
MDA, and other aldehydes). Lens epithelial cells exposed to
C2-ceramide induce lipid peroxidation production (Figure 6B).
These results indicate that ceramide induces oxidative stress
in lens epithelial cells.

DISCUSSION
 The present work shows that exogenously-supplied C2-
ceramide and C6-ceramide decreased cell viability, induced
apoptosis, and increased generation of ROS in human and
bovine lens epithelial cells grown in culture. It was also shown
that exogenously-supplied sphingomyelinase (which causes
release of natural ceramides from the plasma membrane) re-
duced survival of cultured lens epithelial cells.

Ultraviolet radiation and oxidative stress are among the
important age-associated cataract-inducing agents [48]. The
lens has unusually high concentrations of glutathione and an
active glutathione redox cycle is apparently important in pro-
tecting the lens from ROS [48] and in maintaining lens trans-
parency [49]. By producing glutathione, lens epithelium and
superficial cortex detoxify potentially damaging effects of
H

2
O

2
 and dehydroascorbic acid [48]. The low ratio of glu-

tathione to protein-SH makes the aging lens more sensitive to
oxidative stress. Another important but frequently overlooked
outcome of low glutathione levels and UV radiation is activa-
tion of sphingomyelinase and increased ceramide production
by the lens [50-53]. Sphingomyelinase activity has been re-
ported in the lens epithelial, cortical, and nuclear regions [36-
38]. The present work would suggest that the increase in
ceramide production by low glutathione and UV radiation
might result in cell death through apoptosis and ROS produc-
tion.

The relationship between lens epithelial cell death and
cataract formation is controversial. Some reports provide evi-
dence that apoptosis is not observed in cataractous lens [54,55]
while other investigators have found lens epithelial cell death
in cataractous lens and have suggested that this to be a cause
of cataract formation [56,57]. Additional studies using animal
models will be needed to determine the effect of ceramides on
cell death and cataract formation in intact lens.

Due to their solubility, short-chain ceramides were used
in this study. However, the lens epithelial cell membrane sph-
ingomyelin contains predominantly C16 to C24 acyl groups
[58,59]. Several lines of evidence suggest that our work with
short-chain ceramides is applicable to the in vivo situation.
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Figure 6. Ceramide increases reactive oxygen species accumulation
and lipid peroxidation in bovine lens epithelial cells.  A: BLECs were
loaded with DCFH-DA at final concentration of 50 µM for 60 min.
After incubation, DCFH-DA was removed, and the cells were treated
with C2-ceramide (30 µM) for 30-270 min as described in Methods.
The control group was treated with vehicle after loading with DCFH-
DA. Data shown are mean±SEM (n=8) percentages of DCF fluores-
cence normalized to the control (no C2-ceramide) at each sampling
time. B: C2-ceramide induces production of TBARS in BLECs. The
cells were incubated in complete DMEM containing C2-ceramide
for 24 h. Cells were washed with PBS, and TBARS assay was car-
ried out as described in Methods. The TBARS concentration was
expressed as malondialdehyde (MDA) equivalents and normalized
to protein amount in the cells. Results are the average±SEM of three
experiments. The asterisk denotes a p<0.05.
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First, both short- and long-chain ceramides can cause release
of cytochrome C from mitochondria and cause apoptosis
[20,22,60,61]. Second, the addition of short-chain ceramide
(C6-ceramide) significantly increased the amount of endog-
enous long-chain ceramide through recycling of the sphin-
gosine backbone of C6-ceramide via deacylation/reacylation
[62,63]. Third and most importantly, the addition of
sphingomyelinase to our HLEC and BLEC cultures caused a
dose-dependent decrease in cell viability (Figure 3).

Our data shows that exogenously supplied ceramide re-
sults in an increase in ROS in epithelial cells. Other reports
have supported ceramide-mediated oxidative stress [64,65].
Acid sphingomyelinase (aSMase) activation in endothelial
cells increased NAD(P)H oxidase fraction gp91phox protein
levels and enzyme activity in lipid raft-enriched fractions
[66,67]. Formation of a lipid raft redox signaling platform and
endothelial dysfunction was significantly decreased using the
siRNA strategy to reduce aSMase activity [67]. This indicated
the importance of aSMase in mediating and modulating the
formation of lipid raft signaling platform in coronary endot-
helial cells. Similarly, ceramide-mediated increase in
NAD(P)H oxidase activity, and production of radical oxygen
species was reported in glomerular mesangial cells [68]. There-
fore, it seems that ceramide-rich membrane domains may be-
come platforms for activation of oxidative enzymes.

Because the lens is an avascular organ, ROS produced by
lens epithelial cells in response to ceramide would remain in
the lens and result in a decrease in glutathione levels. The
decreased glutathione levels would activate sphingomyelinase
in the lens [50,51] and cause an increase in ceramide levels.
Ceramides released from the cortical and nuclear region may
have adverse effects on the lens epithelial region including
ROS production and increased oxidative stress. The ROS pro-
duced by the lens epithelial cells might also diffuse into the
cortical lens fibers and contribute to the formation of light-
scattering protein aggregates [69].

In addition to induction of apoptosis, ceramides might
also contribute to cataract formation by altering membrane
structure and function. Sphingolipids account for greater than
50% of total human lens phospholipids and increase in aging
and cataract [34,70]. Elevated sphingolipid levels in lens mem-
brane, along with a stress-induced increase in ceramide lev-
els, may alter membrane lipid domains. Investigators have
found that ceramide stabilized lipid rafts and displaced cho-
lesterol from these domains [71,72]. Displacement of choles-
terol from lipid rafts is significant (about 50%) when levels of
ceramide are increased in the total bilayers [73,74] leading to
altered membrane structure and function. Digestion of 25%
of plasma membrane sphingomyelin and generation of
ceramide led to loss of 50% of plasma membrane cholesterol
[74] enhancing glucose uptake with no significant changes in
the abundance of GLUT-1 at the cell membrane. Correlation
between membrane ceramide levels and glucose uptake in the
lens epithelial cells and aging lens requires further study.

The present study has shown that ceramides cause de-
creased cell viability, increased apoptosis, and increased ROS
in cultured lens epithelial cells. The relationship between these

in vitro effects and the formation of cataracts in vivo needs to
be studied further.
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