ke Molecular Vision 2006; 12:1632-9 <http://www.molvis.org/molvis/v12/a187/> ©2006 Molecular Vision
e Received 29 August 2006 | Accepted 14 December 2006 | Published 22 December 2006

Confocal immunolocalization of bovine serum albumin, serum
retinol-binding protein, and inter photoreceptor retinoid-binding
protein in bovineretina
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Purpose: Recently it has been shown that the transport as well as clearance of retinol from isolated rod photoreceptors
requires an extracellular factor. Interphotoreceptor retinoid-binding protein (IRBP) is a component of the interphotoreceptor
matrix (IPM) and is known to bind visual cycle retinoids. Serum albumin and serum retinol-binding protein (SRBP),
proteins capable of binding retinoids, have also been reported to be components of the IPM. It is of interest to know the
components present in the IPM that are capable of binding visual cycle retinoids and that also facilitate rhodopsin regen-
eration. The purpose of this study was to determine the localization of serum albumin, sSRBP, and IRBP in bovine retina
using immunofluorescence analysis.

Methods: Fresh bovine eyes, obtained from a local abattoir, were fixed immediately after enucleation. Tissue sections
(100 um) were incubated with primary antibodies to bovine serum albumin (BSA), sRBP, and IRBP. Sections were
washed then incubated 4 h with 4'-6-Diamidino-2-phenylindole (DAPI), Alexa Fluor® 488 goat antimouse, and Alexa
Fluor® 568 goat antirabbit secondary antibodies. Sections were analyzed using a laser scanning confocal microscope
equipped with Nomarski optics. Western immunoblot analysis of bovine retinal tissues and protein standards was per-
formed using the primary antibodies to BSA, sRBP, and IRBP to show specificity to their respective antigens.

Results: Immunoblot analysis showed that monoclonal anti-BSA was highly specific for BSA detecting only a single
band at about 67 kDa. Antihuman sRBP and antibovine IRBP were also highly specific, recognizing a single band at about
25 and about 133 kDa, respectively. No immunopositive bands were observed in bovine neural retinal when probed with
the anti-sRBP antibody; however, a single immunoreactive band at about 67 and about 133 kDa was detected in bovine
neural retina by the anti-BSA and IRBP antibodies, respectively. Inmunofluorescence analysis showed labeling for IRBP
throughout the IPM. IRBP labeling was especially associated with the outer segments of photoreceptors and also with the
apical surface of the retinal pigment epithelium. Immunofluorescence labeling for serum albumin was associated only
with the lumen of retinal and choroidal blood vessels. Staining for both serum albumin and sRBP in the IPM was negative.
Conclusions: Immunofluorescence analysis of fresh bovine eyes using antibodies to BSA and sRBP clearly shows that
serum albumin and sRBP are not components of bovine IPM. IRBP, on the other hand, is localized to the IPM where it is
available for the binding and transport of visual cycle retinoids. From these data we conclude that serum albumin and
sRBP are not factors that could participate in the binding as well as transport of visual cycle retinoids in the IPM of bovine
retina.

The process of bleaching and regeneration of rhodopsinines with opsin to form rhodopsin, completes the visual cycle.
is indispensable to rod-mediated vision. This process, referred The movement of alirans retinol and 1leis retinal
to as the visual cycle, is dependent on the exchange of retitimrough the aqueous interphotoreceptor space is likely to in-
oid, namely alltrans retinol and 1leis retinal, between the volve a transport protein, for example, interphotoreceptor re-
rod photoreceptors and retinal pigment epithelium (RPE}inoid-binding protein (IRBP) [1,2], serum albumin [3], or
Under bleaching conditions, ahans retinol is generated other lipid binding proteins that may be present within the
within the rod photoreceptor and then is translocated from thiaterphotorecepter space; although, transfer via the aqueous
outer segments to the interphotoreceptor space and taken pipase has also been proposed [4]. It has been demonstrated
by the RPE. Itis within the RPE that &lénsretinol is esteri-  that IRBP plays a role in the uptake of retinol by the RPE [5]
fied for storage and isomerized to its d&-configuration, and specifically promotes the release ofciklretinal from
which is then oxidized to form ldisretinal. Transport of 11- the RPE apical surface [6-10], and recent studies suggest that
cis retinal back to the rod outer segments, where it recomin vivo, IRBP plays a direct role in the release oftia@dhs
retinol from the rods during the visual cycle [11-13]. Never-
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certain other retinoid-binding proteins such as serum albumin METHODS
and serum retinol-binding protein (SRBP) are normal constitu¥\estern blot analysis: Western immunoblot analysis of bo-
ents of the interphotoreceptor matrix (IPM). Serum albumirvine retinal tissues and protein standards was performed us-
has been demonstrated to bind the retinoids of the visual cydleg the primary antibodies to BSA, sRBP, and IRBP to show
[16,17] as does sRBP [17-19]. specificity to their respective antigens. Briefly, neural retinas
Different experimental approaches have been utilized t¢n=2) were carefully dissected from bovine eyes then homog-
examine the protein constituents of the IPM. When monkegnized in PBS containing Complete protease inhibitor cock-
eyes were obtained within 3 min after death and an in sittail (Roche Applied Science, Indianapolis, IN). The retinal
cannulation technique was then used to extract the comphemogenate was centrifuged at 100,000xg for 1 1@t 4nd
nents of the IPM while maintaining the topological integrity protein concentration was determined on the supernatant by
of the chorioretinal complex, IRBP was found to be the majothe Bradford method. Aliquots containingud total protein
protein present in monkey IPM and the only protein bindingf the bovine neural retina supernatant and protein standards
radiolabeled retinol in the IPM [20]. Immunohistochemical(positive controls) were subjected to SDS-PAGE using
studies of mouse [21], rat [22], and human [23,24] eyes diluPage® 4-12% Bis-Tris gels (Invitrogen, Carlsbad, CA).
not detect albumin in the interphotoreceptor space. In corRroteins were transferred to an Immobilon-FL polyvinylidene
trast, serum albumin was found in IPM samples from humafiuoride membrane (Millipore, Bedford, MA). After a brief
donor eyes obtained by an IPM rinse technique and in th&ash in Tris-buffered saline containing 0.1% Tween-20 mem-
interphotoreceptor space by immunohistochemistry of a hubranes were incubated overnight &C4in Sea Block block-
man retina obtained at 1 h postmortem [3,25]. An examinang buffer (Pierce Biotechnology, Rockford, IL). The ratio-
tion of IPM rinse samples from several different vertebrataale for using Sea Block blocking buffer, a fish serum-based
species also showed the presence of variable amounts of altiecking buffer, was that its nonmammalian nature would pre-
min and IRBP [3]. vent cross-reactivity with antimammalian protein antibodies
In order to understand a dynamic process like the visuand therefore would also yield a low background. Membranes
cycle, it is critical to evaluate the components present in theere then probed for BSA, sRBP, and IRBP by incubating 1 h
IPM that are capable of binding visual cycle retinoids and thait room temperature using the following primary antibodies
also facilitate rhodopsin regeneration. The purpose of this studiiluted in blocking buffer: monoclonal antibovine serum al-
was to determine the localization of serum albumin, sSRBRyumin (Clone BSA-33, 1:4000; Sigma-Aldrich, Saint Louis,
and IRBP in the bovine retina using immunofluorescenc&10), monoclonal antihuman serum retinol-binding protein
analysis. (Clone 42, 1:1000; BD Biosciences Pharmingen, San Jose,
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Figure 1. Specificity of the primary antibodies to their respective antigens. Positive controls (1 ng total protein) todaieel inwere

purified bovine serum albumin (BSA)), fetal bovine serunB(), and purified bovine interphotoreceptor retinoid-binding protein (IRBP;

Bovine neural retina supernatanty(@ total protein) was loaded into Lane 2 (all panels). The supernatant was prepared by homogenizing
bovine neural retinas (n=2) in PBS containing Complete protease inhibitor cocktail (Roche Applied Science) followed lgatientetu
100,000xg for 1 h at 4C. Protein concentration was determined on the supernatant by the Bradford method. Western immunoblot analysis
was performed usingA) monoclonal anti-BSA (Clone BSA-33, 1:4000; Sigma-AldricB), fnonoclonal antihuman serum retinol-binding
protein (Clone 42, 1:1000; BD Biosciences Pharmingen), @hdabbit antibovine IRBP (1:5000). The secondary antibodies used were
Qdot® 655 conjugated goat F(ab’)2 antimouse (1:180®), and Qdot® 655 conjugated goat F(ab’)2 antirabbit (1:1G0@Quantum Dot
Corporation). SeeBlue® (Invitrogen) molecular weight markers are shown in Lane M (all panels). The differences seen mahifgeatio
SeeBlue® molecular weight markers for paeEndB compared t& is due to using either MESA(B) or MOPS- C) SDS running buffer.
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CA), or rabbit antibovine interphotoreceptor retinoid-bindingies were fixed by immersion in 4% paraformaldehyde in phos-
protein (1:5000). Purified bovine IRPB protein [1,26] was usegbhate-buffered saline (PBS; pH 7.3) within 15 min of the
for immunization of New Zealand rabbits (Biocon, Rockville,animal’s death. To facilitate rapid fixation, a 3 cm incision
MD) and the antiserum was used as the primary antibody. Aftevas made through the sclera, posterior to the limbus. Eyes
washing, membranes were incubated for 1 h at room tempenaere immersed in an excess (250 ml) of fixative and held on
ture with either Qdot® 655 conjugated goat F(ab’)2 antimousee for 3 h, then transferred to PBS.
(1:1000), or Qdot® 655 conjugated goat F(ab’)2 antirabbit  Pieces of retina with attached RPE-choroid were dissected,
(1:1000; Quantum Dot Corporation, Howard, CA) secondaryvashed in PBS, and embedded in 7% low gelling temperature
antibodies. Detection of labeled proteins was achieved by dagarose. Tissue sections (40® thick) were cut with a vi-
rect fluorescence analysis using a Typhoon® 9400 imaginbrating microtome (Leica Microsystems, Bannockburn, IL).
system (Amersham Biosciences, Piscataway, NJ). For confocal immunolocalization studies, sections were incu-
Immunohistochemistry: Bovine eyes were obtained from bated for 24 h with the following primary antibodies: rabbit
a local abattoir (J.W. Treuth and Sons Inc., Baltimore, MD)antibovine IRPB (polyclonal, 1:200), mouse antibovine se-
To minimize potential postmortem changes in the distributiorrum albumin (Clone BSA-33, 1:100; Sigma-Aldrich, Saint
of serum proteins, all eyes used for immunolocalization stud-ouis, MO) or mouse antihuman sRBP (Clone 42, 1:100; BD
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Figure 2. Confocal immunofluorescence analysis of interphotoreceptor retinoid-binding protein and bovine serum albuménritibavin
Immunoreactivity for interphotoreceptor retinoid-binding protein (IRBP; red fluorescence) is visible throughout the intsrgpioiomatrix
(IPM). Labeling for bovie serum albumin (BSA; green fluorescence) is associated only with the lumen of retinal (arrowsdidatiidbod
vessels. There is no significant labeling for BSA in the IPM, as defined by IRBP labeling (red). The dark ovals withiretie jLlRiabove
the outer nuclear layer are cone photoreceptor inner segments. Cell nuclei appear blue after DAPI staining. The folloxiatigredare
used: choroid (CH), retinal pigment epithelium (RPE), outer segment (OS), inner segment (IS), outer nuclear layer (OMLS@ale twar
represents 7bm; middle and bottom rows: Scale bar represen{si30
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Biosciences Pharmingen, San Jose, CA). Normal serum asdatterplots were generated using images collected in sequen-
serum proteins such as BSA were omitted from theial scan mode. In a scatterplot correlating red and green chan-
immunolabeling process to prevent potential contaminationels, the pure red and green pixels cluster near the axes of the
of bovine sections with exogenous serum proteins. Sectionqgot. Fluorophore colocalization, if present, is represented by
were washed in modified immunolabeling buffer (PBS con-pixels falling near the center (i.e., x=y) and upper right-hand
taining 0.1% Tween 20 and 0.05% sodium azide) then incleorner of the scatterplot. Pixels from areas of signal
bated for 4 h in the following fluorochrome conjugated seccolocalization were identified in scatterplots and mapped back
ondary antibodies (goat antimouse Alexa Fluor® 488, goab the original image.
antirabbit Alexa Fluor® 568 and DAPI; Molecular Probes).
Primary antibodies were omitted from sections used as nega- RESULTS
tive controls. Sections of labeled bovine retina were washeif\estern immunoblot analysis: The specificity of the primary
mounted in Gel-Mount (Biomeda, Foster City, CA), and coveantibodies to BSA, sRBP, and IRBP was validated by western
slipped. A Leica SP2 confocal microscope was used to imagemunoblot analysis (Figure 1A-C, respectively). Monoclonal
samples. Gain and off-set (black level) values were kept comntibovine serum albumin (Clone BSA-33) was highly spe-
stant for each set of experimental and negative control samplefic for bovine serum albumin (Figure 1A, Lane 1) and also a
To identify regions of colocalization, cytofluorogram single immunoreactive band at about 67 kDa in bovine neural
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Figure 3. Confocal immunofluorescence analysis of interphotoreceptor retinoid-binding protein and serum retinol-bindirig [pootea
retina. Immunoreactivity for interphotoreceptor retinoid-binding protein (IRBP; red fluorescence) is throughout the inéeggtotanatrix
(IPM). Labeling for serum retinol-binding protein (SRBP; green fluorescence) is associated with the lumen of a choroideddso ¢at-
rows). There is no significant labeling for SRBP in the IPM, as defined by IRBP labeling (red). The dark ovals within the jlRViedoove
the outer nuclear layer are cone photoreceptor inner segments. Cell nuclei appear blue after DAPI staining. The folloxiatigredare
used: choroid (CH), retinal pigment epithelium (RPE), outer segment (OS), inner segment (IS), outer nuclear layer (OMLS@ale twar

represents 7bm; middle and bottom row: Scale bars represen{s36
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retina (Figure 1A, Lane 2). Monoclonal antihuman serum represent in the IRBP-rich IPM (Figure 4A,B, respectively). Note
tinol-binding protein (Clone 42) and polyclonal rabbit that the area denoted by the white box within the scatterplots
antibovine interphotoreceptor retinoid-binding protein were(inset) of Figure 4A,B is essentially devoid of any signal aris-
also highly specific for their respective antigens recognizingng from colocalized fluorophores.
a single immunoreactive band at about 25 (Figure 1B, Lane 1)
and about 133 kDa (Figure 1C, Lane 1), respectively. No im- DISCUSSION
munoreactive bands were detected in bovine neural retina blyor this study we evaluated the presence of serum albumin,
the anti-sRBP antibody (Figure 1B, Lane 2); however, a singlserum retinol-binding protein, and interphotoreceptor retin-
immunoreactive band at about 133 kDa was detected in boid-binding protein, in the IPM of bovine eyes using confocal
vine neural retina by the anti-IRBP antibody (Figure 1C, Lanémmunofluorescence analysis. Our primary interest in doing
2). this type of study was to establish whether or not these pro-
Confocal immunofluorescenceanalysis. The localization  teins are normal constituents of the IPM. One of our initial
of BSA, sRBP, and IRBP in bovine retina was examined bygoncerns for this study was postmortem changes in retinal tis-
confocal immunofluorescence analysis (Figure 2, Figure 3ues. It has been reported [27] that degenerative changes in
The immunolocalization of IRBP (red fluorescence, Figure 2postmortem retinal tissues occur within 15 min of death when
Figure 3) was restricted to the area between the external lintissues were maintained at room temperature before being
iting membrane and the apical surface of the RPE with morixed. Our goal was to maintain the integrity of retinal tissues
intense labeling around the outer segments of photoreceptoend to minimize the potential for postmortem changes that
This region defines the limits of the interphotoreceptor maeould result in diffusion of serum as well as intracellular pro-
trix. Labeling for BSA (green fluorescence, Figure 2) was asteins into the IPM. Therefore, we obtained fresh bovine eyes
sociated only with the choroid and the lumen of retinal bloodrom a local abattoir where eyes were enucleated, placed on
vessels. Labeling for SRBP, (green fluorescence, Figure 3) wase, and fixed by immersion in ice cold 4% paraformaldehyde
associated with material in the lumen of a choroidal bloodvithin 15 min of the animal’s death.
vessel. No immunolabeling for either BSA or SRBP was ob- The IPM is an extracellular matrix that fills the
served in the IPM of bovine retina. Cytofluorogram analysisnterphotoreceptor space separating the neural sensory retina
provided additional evidence that neither BSA nor sRBP ifrom the RPE. The IPM of the mammalian retina surrounds

Figure 4. Colocalization analysis of bovine serum albumin, serum retinol-binding protein, and interphotoreceptor retingig+bied in

bovine retina. To determine colocalization of fluorophores, we performed scatterplot analysis using composite image wieicbrated

from two independent channel single-wavelength acquisitions. The composite image showing bovine serum albumin (BSA; gig¢en chann
and interphotoreceptor retinoid-binding protein (IRBP; red channel) is displayedrid serum retinol-binding protein (sRBP; green chan-

nel) and IRBP (red channel) By Scatterplots (panel insets) that correlate the red and green channels, show the pure red and green pixels
clustering near the axes of the plot, while colocalized pixels, if present, fall near the center (i.e., x=y) and uppedragtbaof the
scatterplot. To perform the colocalization analysis, we employed an area of interest (AOI), denoted by the white boxetltiier fhet, to

identify pixels from regions of colocalization. These pixels (shown in white) were mapped to the image. The AOI's fortbgtloscare
essentially devoid of any signal arising from colocalized fluorophores with only scant colocalization, consistent with rixhd¢iigeting,

visible inA and no areas of colocalization visibleBnArrows point to the lumen of a retinal blood showing labeled B§Aa(d a choroidal

blood vessel showing labeled sRER.(The following abbreviations are used: choroid (CH), retinal pigment epithelium (RPE), outer segment
(0S), inner segment (IS)A(B) Scale bar represents iBn.
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apices of Mller, photoreceptor cells, and RPE and is boundedchemical techniques [44,45]; however, neither study was able
by two distinct diffusional barriers. One is formed by junc-to detect SRBP within IPM [44,45]. It is interesting to note
tional complexes composed of tight junctions, or zonulahat within ocular tissues, the mRNA for sSRBP uniquely lo-
occludens, between the cells of the RPE and constitutes thalizes to the RPE [45]. Furthermore, Ong et al. [46] were
outer blood retinal barrier [28]. The other diffusional barrierable to show that synthesis of SRBP in cultured RPE cells does
is formed by the zonulae adherentes of the external limitinqndeed occur and that this SRBP was secreted into both the
membrane. The cells surrounding the IPM in conjunction witlapical and basal culture media, although recovery of the se-
the diffusional barriers allow for a unique environment by eicreted sSRBP by these cultured RPE cells was much higher in
ther restricting movement of material (e.g. protein) into or outhe apical medium [46]. If the apical secretion of SRBP by the
of the IPM. In cases where the blood retinal barrier was conRPE does occur in vivo, the RPE could serve as a likely source
promised by disease or injury, serum proteins were found tof SRBP to the neurosensory retina. In our study, immunof-
accumulate within the IPM [23,24,29]. luorescence for sSRBP was limited to material within the lu-
It is widely accepted that IRBP is the most abundant glymen of a choroidal blood vessel. We found no labeling within
coprotein of the IPM [20,30-32], accounting for >70% of thethe IPM or other cells of the neurosensory retina for SRBP. It
soluble protein. IRBP mRNA expression was demonstratet$ possible that the level of SRBP, if present in the bovine IPM,
by in situ hybridization [33,34] and localized to the inner segwas below the limit of detection for the methods used in our
ments of both rod and cone photoreceptors. This mRNA istudy.
translated and IRBP is secreted into the IPM [35-37]. Due to  In conclusion, we have shown that serum albumin and
its large size, (R55 A; M equal to 140 kDa), IRBP is limited sRBP do not immunolocalize to the bovine IPM. Therefore,
to the confines of the IPM [38]. IRBP is known to bind endog-we believe that serum albumin and sRBP are not physiologi-
enous retinol [30,39,40] and is hypothesized to be the transally normal constituents of the bovine IPM, and it is unlikely
port vehicle for visual cycle retinoids between the neural retinthat either of these two proteins are involved in the bovine
and RPE. Recent reports provide evidence suggesting that\isual cycle. On the other hand, our data clearly shows that
vivo, IRBP plays a direct role in the release otidhsretinol ~ IRBP, a protein known to bind visual cycle retinoids, local-
from rod photoreceptors following rhodopsin bleachingizes exclusively to the IPM of the bovine retina. These data,
[11,12]. In our study, we clearly show the immunolocalizationin conjunction with several recent studies [6-12], provide ad-
of IRBP is indeed within the limits of the IPM using confocal ditional evidence supporting the role of IRBP in the binding
immunofluorescence analysis. However, we did not see argnd transport of visual cycle retinoids.
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