The cellular basis of corneal transparency: evidence for 'corneal crystallins'

J Cell Sci. 1999 Mar:112 ( Pt 5):613-22. doi: 10.1242/jcs.112.5.613.

Abstract

In vivo corneal light scattering measurements using a novel confocal microscope demonstrated greatly increased backscatter from corneal stromal fibrocytes (keratocytes) in opaque compared to transparent corneal tissue in both humans and rabbits. Additionally, two water-soluble proteins, transketolase (TKT) and aldehyde dehydrogenase class 1 (ALDH1), isolated from rabbit keratocytes showed unexpectedly abundant expression ( approximately 30% of the soluble protein) in transparent corneas and markedly reduced levels in opaque scleral fibroblasts or keratocytes from hazy, freeze injured regions of the cornea. Together these data suggest that the relatively high expressions of TKT and ALDH1 contribute to corneal transparency in the rabbit at the cellular level, reminiscent of enzyme-crystallins in the lens. We also note that ALDH1 accumulates in the rabbit corneal epithelial cells, rather than ALDH3 as seen in other mammals, consistent with the taxon-specificity observed among lens enzyme-crystallins. Our results suggest that corneal cells, like lens cells, may preferentially express water-soluble proteins, often enzymes, for controlling their optical properties.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aldehyde Dehydrogenase / genetics
  • Aldehyde Dehydrogenase / metabolism
  • Aldehyde Dehydrogenase 1 Family
  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cornea / cytology*
  • Cornea / metabolism*
  • Crystallins / metabolism*
  • DNA, Complementary / genetics
  • Eye Injuries / genetics
  • Eye Injuries / metabolism
  • Eye Injuries / pathology
  • Gene Expression Regulation, Enzymologic
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Light
  • Microscopy, Confocal
  • Molecular Sequence Data
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rabbits
  • Retinal Dehydrogenase
  • Scattering, Radiation
  • Transketolase / genetics
  • Transketolase / metabolism

Substances

  • Crystallins
  • DNA, Complementary
  • Isoenzymes
  • RNA, Messenger
  • Aldehyde Dehydrogenase 1 Family
  • Aldehyde Dehydrogenase
  • ALDH1A1 protein, human
  • Retinal Dehydrogenase
  • Transketolase