Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells

J Biol Chem. 1998 Jul 10;273(28):17771-9. doi: 10.1074/jbc.273.28.17771.

Abstract

Nutrients and certain growth factors stimulate pancreatic beta-cell mitogenesis, however, the appropriate mitogenic signal transduction pathways have not been defined. In the glucose-sensitive pancreatic beta-cell line, INS-1, it was found that glucose (6-18 mM) independently increased INS-1 cell proliferation (>20-fold at 15 mM glucose). Insulin-like growth factor I (IGF-I)-induced INS-1 cell proliferation was glucose-dependent only in the physiologically relevant concentration range (6-18 mM glucose). The combination of IGF-I and glucose was synergistic, increasing INS-1 cell proliferation >50-fold at 15 mM glucose + 10 nM IGF-I. Glucose metabolism and phosphatidylinositol 3'-kinase (PI 3'-kinase) activation were necessary for both glucose and IGF-I-stimulated INS-1 cell proliferation. IGF-I and 15 mM glucose increased tyrosine phosphorylation mediated recruitment of Grb2/mSOS and PI 3'-kinase to IRS-2 and pp60. Glucose and IGF-I also induced Shc association with Grb2/mSOS. Glucose (3-18 mM) and IGF-I, independently of glucose, activated mitogen-activated protein kinase but this did not correlate with IGF-I-induced beta-cell proliferation. In contrast, p70(S6K) was activated with increasing glucose concentration (between 6 and 18 mM), and potentiated by IGF-I in the same glucose concentration range which correlated with INS-1 cell proliferation rate. Thus, glucose and IGF-I-induced beta-cell proliferation were mediated via a signaling mechanism that was facilitated by mitogen-activated protein kinase but dependent on IRS-mediated induction of PI 3'-kinase activity and downstream activation of p70(S6K). The glucose dependence of IGF-I mediated INS-1 cell proliferation emphasizes beta-cell signaling mechanisms are rather unique in being tightly linked to glycolytic metabolic flux.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Division / drug effects
  • Cell Line
  • Enzyme Activation
  • Glucose / metabolism*
  • Insulin-Like Growth Factor I / pharmacology*
  • Islets of Langerhans / drug effects*
  • Islets of Langerhans / enzymology
  • Islets of Langerhans / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphorylation
  • Signal Transduction / drug effects*
  • Viral Proteins / metabolism*

Substances

  • TRS1 protein, Human herpesvirus 5
  • Viral Proteins
  • Insulin-Like Growth Factor I
  • Phosphatidylinositol 3-Kinases
  • Glucose