Cloning, expression, and chaperone-like activity of human alphaA-crystallin

J Biol Chem. 1996 Dec 13;271(50):31973-80. doi: 10.1074/jbc.271.50.31973.

Abstract

One of the major protein components of the ocular lens, alpha-crystallin, is composed of alphaA and alphaB chain subunits that have structural homology to the family of mammalian small heat shock proteins. Like other small heat shock proteins, alpha-crystallin subunits associate to form large oligomeric aggregates that express chaperone-like activity, as defined by the ability to suppress nonspecific aggregation of proteins destabilized by treatment with a variety of denaturants including heat, UV irradiation, and chemical modification. It has been proposed that age-related loss of sequences at the C terminus of the alphaA chain subunit may be a factor in the pathogenesis of cataract due to diminished capacity of the truncated crystallin to protect against nonspecific aggregation of lens proteins. To evaluate the functional consequences of alpha-crystallin modification, two mutant forms of alphaA subunits were prepared by site-directed mutagenesis. Like wild type (WT), aggregates of approximately 540 kDa were formed from a tryptophan-free alphaA mutant (W9F). When added in stoichiometric amounts, both WT and W9F subunits completely suppressed the heat-induced aggregation of aldose reductase. In contrast, subunits encoded by a truncation mutant in which the C-terminal 17 residues were deleted (R157STOP), despite having spectroscopic properties similar to WT, formed much larger aggregates with a marked reduction in chaperone-like activity. Similar results were observed when the chaperone-like activity was assessed through inhibition of gamma-crystallin aggregation induced by singlet oxygen. These results demonstrate that the structurally conservative substitution of Phe for Trp-9 has a negligible effect on the functional interaction of alphaA subunits, and that deletion of C-terminal sequences from the alphaA subunit results in substantial loss of chaperone-like activity, despite overall preservation of secondary structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aldehyde Reductase / metabolism
  • Amino Acid Sequence
  • Base Sequence
  • Chaperonins / metabolism
  • Circular Dichroism
  • Cloning, Molecular
  • Crystallins / chemistry
  • Crystallins / genetics*
  • Gene Expression Regulation
  • Humans
  • Molecular Sequence Data
  • Protein Conformation

Substances

  • Crystallins
  • Aldehyde Reductase
  • Chaperonins

Associated data

  • GENBANK/U66582
  • GENBANK/U66584