A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002)

J Biol Chem. 1994 Feb 18;269(7):5241-8.

Abstract

Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.

Publication types

  • Comparative Study

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Brain / enzymology
  • Cattle
  • Chromones / chemical synthesis
  • Chromones / pharmacology*
  • Dose-Response Relationship, Drug
  • Indicators and Reagents
  • Kinetics
  • Molecular Structure
  • Morpholines / chemical synthesis
  • Morpholines / pharmacology*
  • Phosphatidylinositol 3-Kinases
  • Phosphotransferases (Alcohol Group Acceptor) / antagonists & inhibitors*
  • Phosphotransferases (Alcohol Group Acceptor) / isolation & purification
  • Protein Kinase Inhibitors*
  • Structure-Activity Relationship

Substances

  • Chromones
  • Indicators and Reagents
  • Morpholines
  • Protein Kinase Inhibitors
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • Adenosine Triphosphate
  • Phosphatidylinositol 3-Kinases
  • Phosphotransferases (Alcohol Group Acceptor)