Metabolism of linolenic acid and docosahexaenoic acid in rat retinas and rod outer segments

Exp Eye Res. 1991 Oct;53(4):437-46. doi: 10.1016/0014-4835(91)90161-7.

Abstract

Docosahexaenoic acid (22:6 omega 3) is uniquely enriched in photoreceptor outer segment phospholipids, comprising up to one-half of the fatty acids of phosphatidylethanolamine and phosphatidylserine. The current study was designed to investigate the incorporation of 22:6 omega 3 into outer segment phospholipids over 12 days and to determine whether the retina contained the enzymes necessary for elongation and desaturation of the major dietary precursor of 22:6 omega 3, the essential fatty acid linolenic acid (18:3 omega 3). Sprague-Dawley rats were injected intravitreally with [14C]22:6 omega 3 or [14C]18:3 omega 3 and kept in cyclic light (12 hr light/12 hr dark) for 2 hr to 12 days. Phospholipids from rod outer segments and the remaining retinal debris were separated by two-dimensional thin-layer chromatography. [14C]22:6 omega 3 radioactivity was initially highest in phosphatidylcholine and rapidly decreased from 45% of total phospholipid labeling at 2 hr to 26% by 1 and 3 days in ROS, while phosphatidylethanolamine labeling increased from 49 to 68% by 3 days and phosphatidylserine labeling increased from 3 to 14% over 12 days. Phenacyl derivatives of total fatty acids were separated by HPLC. A substantial conversion of [14C]18:3 to [14C]20:5, [14C]22:5 and [14C]22:6 was noted after 1 days, with increasing conversion to [14C]22:6 over the 12-day period. When only one eye was injected with [14C]18:3 omega 3, negligible radioactive fatty acids were detected in the contralateral eye from 1 to 12 days post-injection demonstrating that conversion of 18:3 to 22:6 occurred primarily within the injected eye. All enzymes for elongation and desaturation of 18:3 to 22:6 appear to be present in the eye. However, the conversion of 22:5 to 22:6 by delta-4 desaturase is evidently rate-limiting and may affect phospholipid replacement during photoreceptor outer segment renewal if this pathway proves to be essential for the supply of 22:6 during disk membrane formation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carbon Radioisotopes / metabolism
  • Docosahexaenoic Acids / pharmacokinetics*
  • Linolenic Acids / pharmacokinetics*
  • Male
  • Phosphatidylcholines / biosynthesis
  • Phosphatidylserines / biosynthesis
  • Phospholipids / biosynthesis
  • Rats
  • Rats, Inbred Strains
  • Retina / enzymology
  • Retina / metabolism*
  • Rod Cell Outer Segment / metabolism*
  • Time Factors

Substances

  • Carbon Radioisotopes
  • Linolenic Acids
  • Phosphatidylcholines
  • Phosphatidylserines
  • Phospholipids
  • Docosahexaenoic Acids