Green tea extract and (-)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways

J Invest Dermatol. 2006 Dec;126(12):2607-13. doi: 10.1038/sj.jid.5700472. Epub 2006 Jul 13.

Abstract

Keloid, a chronic fibro-proliferative disease, exhibits distinctive histological features characterized by an abundant extracellular matrix stroma, a local infiltration of inflammatory cells including mast cells (MCs), and a milieu of enriched cytokines. Previous studies have demonstrated that co-culture with MCs stimulate type I collagen synthesis in fibroblasts, but the signaling mechanisms remain largely unknown. In this study, we investigated the signaling pathways involved in MC-stimulated type I collagen synthesis and the effects of green tea extract (GTE) and its major catechin, (-)-epigallocatechin-3-gallate (EGCG), on collagen homeostasis in keloid fibroblasts. Our results showed that MCs significantly stimulated type I collagen expression in keloid fibroblasts, and the upregulation of type I collagen was significantly attenuated by blockade of phosphatidylinositol-3-kinase (PI-3K), mammalian target of rapamycin (mTOR), and p38 MAPK signaling pathways, but not by blockade of ERK1/2 pathway. Furthermore, GTE and EGCG dramatically inhibited type I collagen production possibly by interfering with the PI-3K/Akt/mTOR signaling pathway. Our findings suggest that interaction between MCs and keloid fibroblasts may contribute to excessive collagen accumulation in keloids and imply a therapeutic potential of green tea for the intervention and prevention of keloids and other fibrotic diseases.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Camellia sinensis / chemistry*
  • Catechin / analogs & derivatives*
  • Catechin / pharmacology
  • Cells, Cultured
  • Coculture Techniques
  • Collagen Type I / metabolism*
  • Fibroblasts / metabolism*
  • Humans
  • Keloid / metabolism*
  • Keloid / pathology
  • Mast Cells / physiology*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Plant Extracts / pharmacology*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects

Substances

  • Collagen Type I
  • Plant Extracts
  • Catechin
  • epigallocatechin gallate
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt