Molecular genetics of Marfan syndrome

Curr Opin Cardiol. 2005 May;20(3):194-200. doi: 10.1097/01.hco.0000162398.21972.cd.

Abstract

Purpose of review: Marfan syndrome, the founding member of connective tissue disorders, is characterized by involvement of three major systems (skeletal, ocular, and cardiovascular) due to alteration in microfibrils. FBN1 at 15q21.1 was found to cause Marfan syndrome in 1991, and in 2004 TGFBR2 at 3p24.1 was newly identified as the Marfan syndrome type II gene. Several studies implied that fibrillin-1 and transforming growth factor-beta (TGF-beta) signaling are functionally related in extracellular matrix. Identification of TGFBR2 mutations in Marfan syndrome type II provided the direct evidence of the relation in humans.

Recent findings: More than 500 FBN1 mutations have been found in Marfan syndrome, tentative genotype - phenotype correlations have emerged, and mouse models are providing insight into pathogenic mechanisms. TGFBR2 mutations are still limited, however, in 2005 were also reported to cause a new aneurysm syndrome. Functional association between fibrillin-1 and TGF-beta signaling in extracellular matrix has been presented.

Summary: This review focuses on recent molecular genetics advances in Marfan syndrome and overlapping connective tissue disorders. Mutation spectrum of FBN1 and TGFBR2 in relation to phenotype is presented. Functional relation between fibrillin-1 and TGF-beta signaling is discussed. Future prospects in the study of Marfan syndrome are presented.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Fibrillin-1
  • Fibrillins
  • Humans
  • Marfan Syndrome / genetics*
  • Marfan Syndrome / metabolism
  • Microfibrils / metabolism
  • Microfilament Proteins / genetics*
  • Microfilament Proteins / metabolism
  • Molecular Biology*
  • Mutation
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type II
  • Receptors, Transforming Growth Factor beta / genetics*
  • Receptors, Transforming Growth Factor beta / metabolism
  • Signal Transduction / genetics

Substances

  • FBN1 protein, human
  • Fbn1 protein, mouse
  • Fibrillin-1
  • Fibrillins
  • Microfilament Proteins
  • Receptors, Transforming Growth Factor beta
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type II