Distribution, markers, and functions of retinal microglia

Ocul Immunol Inflamm. 2002 Mar;10(1):27-39. doi: 10.1076/ocii.10.1.27.10328.

Abstract

Retinal microglia originate from hemopoietic cells and invade the retina from the retinal margin and the optic disc, most likely via the blood vessels of the ciliary body and iris, and the retinal vasculature, respectively. The microglial precursors that appear in the retina prior to vascularization are major histocompatibility complex (MHC) class I- and II-positive and express the CD45 marker, but lack specific macrophage markers. They differentiate into ramified parenchymal microglia in the adult retina. A second category of microglial precursors, which do express specific macrophage markers, migrate into the retina along with vascular precursors. They appear around blood vessels in the adult retina and are similar to macrophages or cells of the mononuclear phagocyte series (MPS). Microglia are distributed in the outer plexiform layer (OPL), outer nuclear layer (ONL), inner plexiform layer (IPL), ganglion cell layer (GCL), and nerve fiber layer (NFL) of the primate retina. The pattern of microglial distribution in the avascular retina of the quail indicates that blood vessels are not responsible for the final location of microglia in the retina. In the human retina, microglia express MHC class I, MHC class II, CD45, CD68, and S22 markers. In the rat and mouse retina, OX41, OX42, OX3, OX6, OX18, ED1, Mac-1, F4/80, 5D4 anti-keratan sulfate, and lectins are used to recognize microglia. Microglial cells play an important role in host defense against invading microorganisms, immunoregulation, and tissue repair. During neurodegeneration, activated microglial cells participate in the phagocytosis of debris and facilitate regenerative processes. In autoimmune disease, microglia have dual functions: initiating uveoretinitis, but also limiting subsequent inflammation. Retinal microglia may be associated with vitreoretinopathy, diabetic retinopathy, glaucoma, and age-related macular degeneration. The goal of this article was to review the present knowledge about retinal microglia and the function of retinal microglia in pathological conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biomarkers
  • Humans
  • Microglia / cytology*
  • Microglia / physiology*
  • Retina / cytology*
  • Retina / physiology*
  • Retina / physiopathology
  • Retinal Diseases / physiopathology
  • Stem Cells / cytology
  • Stem Cells / physiology

Substances

  • Biomarkers