Analysis of Drosophila 26 S proteasome using RNA interference

J Biol Chem. 2002 Feb 22;277(8):6188-97. doi: 10.1074/jbc.M109996200. Epub 2001 Dec 5.

Abstract

We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Line
  • DNA Primers
  • Drosophila melanogaster / enzymology*
  • Kinetics
  • Molecular Sequence Data
  • Peptide Fragments / chemistry
  • Peptide Hydrolases / genetics*
  • Protease Inhibitors / pharmacology
  • Proteasome Endopeptidase Complex*
  • RNA, Double-Stranded / genetics*
  • RNA, Messenger / genetics
  • Transcription, Genetic

Substances

  • DNA Primers
  • Peptide Fragments
  • Protease Inhibitors
  • RNA, Double-Stranded
  • RNA, Messenger
  • Peptide Hydrolases
  • Proteasome Endopeptidase Complex
  • ATP dependent 26S protease