Molecular organization of the postsynaptic specialization

Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7058-61. doi: 10.1073/pnas.111146298.

Abstract

A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain / physiology*
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / physiology*
  • Nerve Tissue Proteins / physiology*
  • Receptors, AMPA / drug effects
  • Receptors, AMPA / physiology*
  • Receptors, N-Methyl-D-Aspartate / drug effects
  • Receptors, N-Methyl-D-Aspartate / physiology*
  • Synapses / physiology*

Substances

  • Excitatory Amino Acid Antagonists
  • Nerve Tissue Proteins
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • postsynaptic density proteins