Heme oxygenase: recent advances in understanding its regulation and role

Proc Assoc Am Physicians. 1999 Sep-Oct;111(5):438-47.

Abstract

Heme oxygenase (HO) is responsible for the physiological breakdown of heme into equimolar amounts of biliverdin, carbon monoxide, and iron. Three isoforms (HO-1, HO-2, and HO-3) have been identified. HO-1 is ubiquitous and its mRNA and activity can be increased several-fold by heme, other metalloporphyrins, transition metals, and stimuli that induce cellular stress. HO-1 is recognized as a major heat shock/stress response protein. Recent work from our laboratory has demonstrated several potential consensus regulatory elements in the 5'-untranslated region (UTR) of HO-1, including activator protein 1 (AP-1), metal responsive element (MRE), oncogene c-myc/max heterodimer binding site (Myc/Max), antioxidant response element (ARE), and GC box binding (Sp1) sites. Using deletion-reporter gene constructs, we have mapped sites that mediate the arsenite-dependent induction of HO-1, and we have shown that components of the extracellular signal-regulated kinase (ERK) and p38 (a homologue of the yeast HOG1 kinase), but not c-jun N-terminal kinase (JNK), mitogen-activated protein (MAP) kinase pathways are involved in arsenite-dependent upregulation. In contrast, HO-2 is present chiefly in the brain and testes and is virtually uninducible. HO-3 has very low activity; its physiological function probably involves heme binding. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a key role in the modulation of vascular tone, especially in the liver under physiological conditions, and in many organs under "stressful" conditions associated with HO-1 induction. Biliverdin and its product bilirubin, formed in most mammals, are potent antioxidants. In contrast, "free" iron increases oxidative stress and regulates the expression of many mRNAs (e.g., DCT-1, ferritin, and transferrin receptor) by affecting the conformation of iron regulatory protein (IRP)-1 and its binding to iron regulatory elements (IREs) in the 5'- or 3'-UTRs of the mRNAs.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Enzyme Induction
  • Gene Expression
  • Heme / physiology
  • Heme Oxygenase (Decyclizing) / genetics
  • Heme Oxygenase (Decyclizing) / physiology*
  • Heme Oxygenase-1
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / physiology
  • Membrane Proteins
  • Mice
  • Mice, Knockout
  • Mitogen-Activated Protein Kinases / physiology
  • Promoter Regions, Genetic

Substances

  • Isoenzymes
  • Membrane Proteins
  • Heme
  • HMOX1 protein, human
  • Heme Oxygenase (Decyclizing)
  • Heme Oxygenase-1
  • Hmox1 protein, mouse
  • Mitogen-Activated Protein Kinases